

ThermoFisher SCIENTIFIC

GC and GC/MS Q Exactive and applications

Miloš Korman EMEA Sales Manager GC/GCMS

Sofia, October 22nd, 2016

The world leader in serving science

Agenda

- GC&GCMS portfolio 2016
 - Expanded GC/GCMS product offering
- GC news for 2016
 - Injectors & Detectors
- GCMS ISQ news for 2016
 - GC/GCMS Product Portfolio and Application
- GCMSMS TSQ news for 2016
 - Application in Tox & Forensic
- QEGC Update
- Conclusion

GC & GC-MS Products portfolio

ThermoFisher SCIENTIFIC

GC news for 2016

The world leader in serving science

TRACE 1310 GC: Touch screen interface provides instant access for ease of use and local control

TRACE 1300 GC: Local built-in ultrasimplified user interface – two buttons and four LEDs

Modules available:

Injectors: SSL - SSL backflush - PTV - PTV backflush - TSI - OCI - Helium Saver SSL+ Detectors: FID - TCD - ECD - NPD – FPD - PDID - MS* Other Options: MS NoVent, Auxiliary Oven, Inj/Oven Cryo, Aux carrier Software drivers: Chromeleon 6.8, 7.1 and 7.2 CDS, Xcalibur, ChromQuest, ChromCard Agilent[™] OpenLAB[™] EZChrom ed. CDS, Agilent EZChrom[™] (Agilent is a trademark of Agilent Corporation)

* Newly Released Modules and Options

*Supported Thermo Scientific MS: ISQ [™] Series GC-MS; ITQ[™]GC-MS; TSQ Quantum XLS GC-MS/MS; DFS; Delta V

ThermoFisher SCIENTIFIC

Injectors update for 2016

The world leader in serving science

What is iC-TSI= Instant Connect ThermoSpray Injector

TRACE1300 SSL	TRACE1300 TSI
Cold head	Hot head
Liquid band injection	Thermospray injection
Needs fast injection	Suitable for "Hot Needle Injection" technique
Simple and easy to set up	Method transfer from TRACE Ultra GC
Not optimized for manual injection	Well performing with manual injection
Liner with glass wool required	Empty liner is used
Agilent like SSL injector	Required for specific applications

i-TSI module

p/n 19070016 TRACE 1300/1310 TSI MODULE

It occupies two injector slots onto the Trace1300 GC Series

Some of the challenging pesticides...

- Azole family (aim to tail in injector/T-line)
 - Azaconazole
 - Bitertanol
 - Bromuconazole
- Pyrethrinoids (always difficult)
 - Deltamethrine
 - Cyhalothrines
- OrganoChlorine compounds
 - Endosulfan sulfate
- ✓ Uracyl herbicide
 - Bromacil (difficult detection)

- Organophosphorus compounds (sensitive to injector activity)
 - Dichlorvos
 - Vamidothion
 - Demethon S methyl Sulfone
 - Dimethoate
- Phenyl sulfamide insecticides
 - Tolyfluanide
- Benzamide herbicides family
 - Isoxaben (sensitive to column, T-line...)

Isoxaben

Signal @10µg/L

Linearity from 10pg to 30pg

Signal @3µg/L

i-TSI

Linearity from 3pg to 30pg

5 replicates @10µg/L

Bromacil

i-SSL

Signal @10µg/L

Linearity from 3pg to 30pg

Thermo Fisher

Endosulfan sulfate

i-SSL

Signal @3µg/L

Linearity from 3pg to 30pg

5 replicates @10µg/L

Signal @3µg/L

i-TSI

5 replicates @10µg/L

When i-TSI is the right solution?

Looking at limit of detection, SN, area, %CV at 10pg and linearity we can observe that :

✓ i-TIS is a clearly better with improved limit of detection

√lsoxaben

✓Vamidothion

✓Bromacil

- ✓ i-TIS is slightly better with higher SN
 - ✓Endosulfan sulfate

✓Bitertanol

 $\checkmark Cy fluthrines$

- ✓ Deltamethrines
- √tolyfluanid

✓i-SSL and i-TIS are as excellent in matter of other Pesticides, detection, linearity and repeatability

Thermospray injection can be advantageous with some critical compounds particularly prone to thermal degradation

iC-OCI: Instant Connect On-column Injector module

iC-OCI inlet

- Based on the Carlo Erba cold on-column injector
- Merlin Microseal septum for low maintenance
- Continuous cooling of the injector body thanks to the integrated fan
- Pre-column secondary cooling
- Compatible with manual injection and Triplus RSH autosampler
- ✓ Two OCI modules can be mounted by using 1 set of Aux Modules

iC-OCI: Instant Connect On-column Injector module

How to order:

Auxiliary Gas Module

Aux Temperature/Cryo Module

p/n 19071065	iC-OCI Module kit	Includes the Merlin Microseal 26s, the solenoid valve for secondary cooling with mounting bracket, tubing	
p/n 19070080	Aux Carrier Gas Module	For Carrier Gas supply and control	
p/n 19070070	Aux Temp Module	For the timed actuating of the secondary cooling	

- ✓ Thermolabile compounds \rightarrow PBDE 209
- ✓ Very high boilers → triglycerides, HT SimDist
- ✓ Wide boiling point range
- When an alternative to the PTV injector is required
- When sample does not include no-elutable by-products (clean sample extract)

Benefits

- ✓ True cold injection → no thermal breakdown
- Direct injection into the column \rightarrow no discrimination
- Sensitivity \rightarrow splitless and LV injection
- ✓ Excellent injection repeatability < 0.5% RSD

Inj.	C12	C14	C16
1	1729812	1718526	1700241
2	1736398	1721253	1703718
3	1730131	1717829	1699899
4	1741246	1726306	1708989
5	1744551	1728775	1710122
6	1746308	1731325	1713732
7	1751230	1731861	1717433
8	1740056	1725927	1707828
9	1750468	1735191	1717330
10	1744906	1729495	1709880
Average	1741510	1726649	1708917
Stdev	7551	5851	6269
RSD %	0,43%	0,34%	0,37%

iC-OCI: the right solution

Triglycerides

CN54 = Tri-C18, glycerol backbone with three C18 fatty acids attached.

iC-OCI: the right solution

HT SimDist

ThermoFisher SCIENTIFIC

Detectors update for 2016

The world leader in serving science

Instant Connect FPD detector

- Available as Instant Connect module, can be mounted on any existing TRACE 1300 Series GC
- Highest sensitivity for the determination of Sulfur, Phosphorous and Tin containing species
- Acquisition rate up to 300 Hz
- Available, as option, as dual wavelength option with two FPD independent Instant Connect modules

iC-PDD Pulse discharge detector

- Alternative to universal detector for <u>ppb</u> concentration range
- Engineered solutions (eg. specialty gases)
- Alternative for ECD if radioactive source is not suitable
- Replacement for FID, PID specifically required for the low detectability range

PDD minimum detectable amounts

MDQ S/N=3				
Sample injected 250uL, 1/10 split ratio				
compound	pg	ppb (v/v)		
Carbon dioxide	0,9	30		
Carbon monoxide	4	150		
Nitrous oxide	0,9	30		
Methane	0,6	20		
Acethylene	1	40		
Ethylene	0,7	25		
Ethane	0,7	25		

ThermoFisher SCIENTIFIC

Autosamplers update for 2016

The world leader in serving science

Thermo GC Autosamplers Lineup

Solvent-free extraction of volatiles

No enrichment of volatiles

Static Headspace Sampling (SHS)

With enrichment of volatiles on adsorbent material

- Purge&Trap (P&T)
- Solid Phase Micro Extraction (SPME, MEPS)
- Stir Bar Sorptive Extraction (SBSE)
- Headspace Sorptive Extraction (HSSE)
- Dynamic Headspace Sampling (DHS, ITEX)
- Thermal Desorber (TD)

Triplus RSH expanded options for VOC and SVOC market

ITEX Dynamic Headspace

.....Simplicity and handiness

- Easy sample handling
- No loop, transfer line, or switching valve
- Easy access to the trap and syringe
- Straightforward troubleshooting and maintenance
- Minimum instrument downtime

ITEX Dynamic Headspace

Proven industry standard adsorbents

- <u>Standard</u> ITEX DHS adsorbent:
 - Tenax TA 80/100 mesh (volatile and semivolatile compounds)
- Additional ITEX DHS adsorbents:
 - Carbopack C, 80/100 mesh
 - Carboxen 1000, 60/80 mesh
 - Carbosieve S III, 60/80 mesh
 - Tenax GR, 80/100 mesh
 - Tenax GR, 80/100 mesh / Carbosieve S III, 60/80 mesh

SUGGESTED APPLICATIONS:

Tenax TA:Volatile and semivolatile compounds, temperature limit of 350°CCarbopack:Hydrophobic properties minimized sample displacement by waterCarbosieve/Carboxen:For very volatile compounds, e.g. Vinylchloride, Freon compounds

Reference: **Optimization strategies of in-tube extraction (ITEX) methods** J. Laaks et al. Anal Bioanal Chem (2015) 4017:6827-6838

TriPlus RSH: ATC Automatic Tool Change

- Multiple injection methods on one instrument: Flexibility and Productivity
- Intelligent Switch to Dynamic Headspace if Static Headspace is not sensitive enough

EPA 502.2: Increased sensitivity towards Headspace by magnitudes, <u>Easily reaching threshold values of US-EPA Methods for</u> <u>VOC's</u>

TriPlus RSH: ATC Automatic Tool Change

- Switching of sample injection techniques on the same instrument
- TriPlus RSH is compatible with a wide range of syringe volumes
- ATC station enables <u>unattended</u> syringe exchange <u>during a sequence</u>

Triplus RSH

Triplus RSH expanded options for VOC and SVOC market

• SPME Arrow tool

• Heatex-Stirrer

SPME Arrow Fiber collection

- A full range of fibers is available with different diameter and thickness
- Diameter is coded
- All SPME Arrow fibers have 20 mm phase length

Color code	Phase	Diameter	Phase Thickness
Red	PDMS	1,1 mm	100 um
Grey	Acrylate	1,1 mm	100 um
Light Blue	Carbon WR/PDMS	1,1 mm	120 um
Violet	DVB/PDMS	1,1 mm	120 um
Black	PDMS	1,5 mm	250 um

- Due to the larger needle diameter, an SPME Arrow adaption kit for the Split/Splitlessinjector is necessary:
 - Adaptation kit for TRACE 1300 Series GC Split/Splitless injector
 - Adaptation kit for TRACE Ultra GC Split/splitless injector
- A specific liner (1.8 or 1.3 mm i.d. depending on the fiber diameter) is suggested for optimal performance

Higher volume = Up to 10 times more sensitivity

The table below shows the dimension of a PAL SPME Arrow 1.5 mm (a), 1.1 mm (b) and a SPME Fiber (c) in comparison:

- Larger surface, faster extraction >> 2x higher sample throughput
- More sorption phase, superior sensitivity>>up to 10 times more sensitivity, wider dynamic range
- Optimized geometry, greater robustness>>SPME Arrow and injector septa last at least 2 x times longer
- Designed for reliable automation via TriPlus RSH autosampler

SPME Arrow vs SPME fiber

• Headspace extraction: aroma analysis in white wine

(SPME Arrow 100 µm, 20 x 1.1 mm compared to SPME 100 µm, 10 x 0.3 mm)

MDL and RSD obtained with SPME Arrow (250 umx 20 mm) for PAHs in water in comparison with literature data for classical SPME and SBSE bars

Compound	PAL SPME Arrow		SPM	SPME (Cheng et al.) [15]			SBSE (Carrera et al.) [22]		
	MDL (ng L	¹) RSD (%) (at 10 ng L^{-1})	LOD (SD X	(3)	RSD (conc. at S/N=3×3)	LOE at S/	$N = 3 \times 3$	RSD (%) (at 50 ng L ⁻¹)	
Naphthalene	0.3	5.7	2.7		9.0			/	
Acenaphthylene	0.2	6.0	1.8		6.0	0.1		/	
Acenaphthene	0.1	7.1	0.9		3.0	/		/	
Fluorene	0.2	5.6	3		10.0	0.1		8.3	
Phenanthrene	0.2	5.5	2.1		7.0	0.1		1.1	
Anthracene	0.3	7.6	2.1		7.0	0.2		2.1	
Pyrene	0.2	6.4	3.6		12.0	0.2		/	
Fluoroanthene	0.2	6.2	2.1		7.0	0.2		/	
1,2-Benzanthracene	0.1	6.2	2.1		7.0	0.2		6	
Chrysene	0.1	11.0	1.5		5.0	0.2		10.6	
Benzo(b)fluoroanthene	0.2	10.5	2.7		9.0	0.1		/	
Benzo(k)fluoroanthene	0.2	8.6	1.8		6.0	0.1		/	
Benzo[a]pyrene	0.3	7.2	3.6		12.0	0.1		/	
Indeno(1,2,3 cd)pyrene	0.8	9.2	3.6		12.0	0.3		/	
Dibenz(ah)anthracene	0.6	11.3	1		/	0.3		/	
Benzo(ghi)perylene	0.8	11.9	1.8	J	6.0	0.3		/	

MDL values calculated with a 99 % confidence interval

/ not determined

SPME Arrow - Evaluation of a Novel Solid-Phase Microextraction Device for Freely Dissolved PAHs in Water; Kremser A. et al 2016, 408, 943-952

Immersion extraction: PAHs in water

Extraction yields for water samples containg 50 ng/L PAHs after 70 min

SPME Arrow 20 mm x 250 um carbon WR **SPME fiber** 10 mm x 100 um Carbon WR

SPME Arrow - Evaluation of a Novel Solid-Phase Microextraction Device for Freely Dissolved PAHs in Water; Kremser A. et al 2016, 408, 943-952

Sampling techniques comparison chart

Analytical quality	HS		DHS/Purge	DHS/Purge & Trap		SPME Arrow	ITEX-DHS	SBSE/HSSE	
	Loop	syringe	P bal	headspace	sparkling	Immersion/ headspace	Immersion/ headspace	headspace	Immersion/ headspace
Sensitivity	+	+	+	++	+++	++	++++	+++	++++
Regulation compliance	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
EPA methods	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
EU methods	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Ease of use	+++	+++	+++	++	++	+++	+++	+++	+++
Sample handling	+++	+++	+++	++	+	+++	+++	+++	++
Analytes discrimination	low	low	low	low	med	med/high	med/high	low	high
Risk of contamination	low	very low	low	low	high	very low	very low	low	low

Hardware related	HS			DHS/Purge & Trap		SPME	SPME	ITEX-DHS	SBSE/HSSE
Modularity	No	Yes	No	No	No	Yes	Yes	Yes	Yes
Cost of device	high	low	high	high	high	low	low	low	high
Automated	Yes	Yes	Yes	limited	Yes	Yes	Yes	Yes	Yes
Space requirement	high	low	high	high	high	low	low	low	low
GC installation needs	high	low	high	high	high	low	low	low	low
GC injector blocked	Yes	No	Yes	Yes	Yes	No	No	No	No
Flexible w injection modes	No	Yes	No	No	No	Yes	Yes	Yes	Yes

Head Space TriPlus 300 – transfer line

Instrument configuration

- TRACE 13XX GC
- Dual column system
- TriPlus 300 Head Space Autosampler
- FID
- Chromeleon 7.2 CDS

Screening with GC detector; confirmation with MS detector

ThermoFisher SCIENTIFIC

2016 GCMS Single Quadrupole

The world leader in serving science

Mass Spec Components Same for All Product Offerings

Designed With Intention ISQ Series - Intelligent Single Quad

Single Quadrupole Mass Spectrometer

ISQ Series Technical Specifications

Specification	ISQ QD	ISQ QD 300	ISQ LT
In EI mode, 1 µL of 1 pg/µL OFN m/z 272 , scanning from 50 – 300 Da (*)	750:1 (*)	2000:1 (*)	2000:1 (*)
In PCI mode, 1 µL of 100 pg/µL BZB m/z 183, scanning from 80 – 230 Da	Not Available	Not Available	300:1
In NCI mode, 2 µL of 100 fg/µL of OFN m/z 272, scanning from 50 – 300 Da	Not Available	Not Available	2000:1
IDL for m/z 272 in SIM mode in EI	<u><</u> 10 fg	<u><</u> 5 fg	<u><</u> 1,5 fg
Ionization Modes	EI only	El only	EI and CI
Carrier Gas Choice	He only	He or H ₂	He or H ₂
Instant Connect Helium Saver Injector	Compatible	Compatible	Compatible
Turbomolecular High Vacuum Pump	66 L/s	300 L/s	300 L/s
Vacuum Probe Interlock	Not Available (No Direct Probes)	Not Available (No Direct Probes)	VPI as standard Optional Direct Probes
Automation Features	Optional t-SIM/AutoSIM	t-SIM/AutoSIM	t-SIM/AutoSIM
Quadrupole Scanning Speed	20,000 Da/s	20,000 Da/s	20,000 Da/s

(*) demonstrated at installation

ExtractaBrite Ion Source

Repeller

- Patented RF lens protects ion guide and quads
- RF lens is removed with source cartridge without venting
- RF lens kept hot to keep clean
- Repeller designed to overcome ion burn once it forms

ExtractaBrite Ion Source

Lenses 1, 2 and 3 plus the RF lens, along with the repeller and ion volume are contained in a sleeve, all of which can be removed from *ISQ LT* while the system is under vacuum.

The ability to remove the entire ion source from **ISQ LT** without venting means you are never down and always productive.

Removable Source Under Vacuum

GCMS Analyzer Kits

- Aim to target routine Environmental Laboratories with proven robustness, sensitivity and high sample throughput
- Compatible with ISQ QD and ISQ LT
- Ready to use package with method, troubleshooting and reporting
- Dedicated consumables and spares to complete the package
- Compatible with both Chromeleon and TraceFinder
- Compatible with Helium Saver

Dedicated to semivolatile contaminants in environmental samples (EPA 8270D)

Target Launch Q3

Dedicated to semivolatile contaminants in drinking water (EPA 525.3)

Target Launch Q4

One Minute Highlight August 23rd 2016

One Minute GC & GC-MS Highlight

New Product: U.S. EPA 8270D Analyzer Kit

Update your lab and overcome the challenges of semivolatile (SVOC) analysis

Get a complete solution designed to provide seamless migration to Thermo Scientific GC-MS instrumentation for semivolatile organic compound (SVOC) analysis. The Thermo Scientific[™] U.S. EPA 8270D Analyzer Kit removes the need for new method development offering a validated methodology that includes instrument and processing methods, as well an EPA environmental specific report package. All components of the kit were developed to fulfill EPA methods requirements.

Click the links below to learn more about the new EPA 8720D Analyzer Kit:

Link to One Minute Highlight

Web page

Thermo Fisher		(Cont	🔇 Contact Us 📰 🛛 Sign In 👻			₽5
5 6 1 2 11 1		Recently Viewed Ite	ms 🔻				
,	Applications & Techniques	Shop All Products	Services & Support	About Us	S Clo	oud	

Mass Spectrometry Instruments & Equipment > Mass Spectrometry Systems & Components > EPA 8270D Analyzer Kit

EPA 8270D Analyzer Kit

Thermo Scientific™ Related applications: Industrial Mass Spectrometry

Get a complete solution designed to provide seamless migration to Thermo Scientific[™] GC-MS instrumentation for semi-volatile organic compound (SVOC) analysis. The Thermo Scientific[™] EPA 8270D analyzer kit removes the need for new method development offering a validated methodology that includes instrument and processing methods, as well an EPA environmental specific report package. All components of the kit were developed to fulfill EPA methods requirements.

Contact us for support >

Catalog number	Product Size	Description	Software	For Use With	Price (GBP)
1R120400- 8270	-	88 Validated Compounds Linearity Range: 0.2-200ppm (with same column and liner)	Chromeleon 7.2 SR4 MUB or newer; TraceFinder EFS 4.1 or newer	Thermo Scientific [™] ISQ [™] QD Single Quadrupole GC-MS System and Thermo Scientific [™] ISQ [™] LT Single Quadrupole GC-MS System	Request A Quote

EPA 8270D Web page

EPA 8270D kit overview

EPA 8270D kit is a new, ready-to-use application solution delivering maximum up-time and more reliable results to Environmental customers

Kit concept

- Ready to use with Method 8270D, includes:
 - Set of consumables (column, liner, septa, etc.)
 - Pre-loaded processing methods, templates and e-workflows
 - Videos with training on most common sw activities
 - App note AN10522, troubleshooting guide

Product offering

- Available with ISQ QD and ISQ LT
- Chromeleon (SR4 Mub HF) or TraceFinder EFS compatible
- Compatible with Helium Saver
- Splitless method 0.2-50ppm and split method 2-200ppm (same column and liner)

EPA 8270D kit p/n **1R120400-8270** BOM (Bill Of Materials)

Part number	Description	GRP, \$USD			
26098-1425	Column, TG-5MS w/ 5m guard,30m X 0.25mm X 0.25µm	\$637,00			
453A1925	Injection liner,4mm ID x 105 mm, pack of 5	\$109,00			
290VA191	Graphite/Vespel Ferrule, 0.1 - 0.25 mm, pack of 10	\$48,00			
31303233	Septa BTO Coated, 11 mm, pack of 50	\$81,00			
1R120400-SCA	System Conditioning Agent	\$85,41			
1R120479-0060	1R120479-0060 EPA 8270D CD (contains methods, user guide, video training, app note, troubleshooting guide) compatible with TF and CM				
	Total Reference Price of all parts				
1R120400-8270	1R120400-8270 EPA 8270D Kit Global Reference Price				

EPA 8270D CD 1R120479-0060

- TraceFinder methods and templates
- Chromeleon e-Workflow (with methods and reports)
- EPA 8270D user guide
- EPA 8270D application note
- Tutorial Video

thermoscientific

APPLICATION NOTE

Optimizing the Analysis of Semi-volatiles by EPA Method 8270D

Authors: David Steiniger, Tommaso Albertini, Richard Law

Keywords GC-MS, Semi-volatiles, Helium Saver, ISQ, 8270

Introduction

The U.S. Environmental Protection Agency (EPA) released the first Semi-Velatile Organic Compounds method by Gas Chromatography/Mass Spectrometry (EPA 8270) at the end of 1980 and is a common method used in almost all environmental labs. Since then, single quadrupole mass spectrometers have become thousands of times more sensitive and the relative abundances have changed.

Experimental Conditions

Thermo Scientific ISQ Single-Quadrupole GC-MS System The method was tested on 5 different ISQs units to assess method transferability and instrument-to-inst variability. Both ranges (0.2-56 ppm and 2-200 ppm validated using Thermo Scientific Instant Connect He Saver Module (P/N 19070013) and Instant Connect Split-Splitless SSL module (P/N 19070010). The liner is Injection line, 4 mm ID × 105 mm (P/N 453A1925). ISQ was operated in full-scan mode and the Thermo

EPA 8270D Kit for ISQ Series Mass Spectrometers User Guide

1R120555-0010 Revision A July 2016

thermo scientífic

How to order EPA 8270D kit

Chromeleon 7.2 SR3 – New GCMS Functionality

- Integrated control for TSQ8000Evo
 - Performance Improvements with Large Datasets

Pesticides Analyzer

- Update to GCBU Pesticides Analyzer DVD
- Will include method templates, report templates, compound database and workflow instructions

GCMS EPA Water Analysis

- Environmental Extension Pack containing eWorkFlows, method templates and report templates, view settings, custom variables
- Deconvolution SW for unknowns and RI
 - Target release in Q4 2016

ThermoFisher SCIENTIFIC

2016 GCMSMS TSQ 8000 EVO, TSQ 8000 DUO

The world leader in serving science

Triple Quadrupole MS – Principle of Operation

Quantitation of target compounds in matrix samples

GCMSMS Analyzer Kits

- Aim to target routine Environmental and Food Safety Laboratories with proven robustness, sensitivity and high sample throughput
- Compatible with TSQ DUO and TSQ8000EVO
- Ready to use package with method templates, report templates, compound database and workflow instructions
- Dedicated consumables and spares to complete the package
- Compatible with both Chromeleon and TraceFinder
- Compatible with Helium Saver

Pesticide Analyzer

CDB extended to 1001 compounds with 3 optimized transitions

Dioxins Analyzer

Dedicated workflow and SOP for Dioxins Analysis

Target Launch Q3

Drugs of Abuse Testing Laboratory Workflow

Sample prep: injecting blood, sweat and tears on a GC

- Sample preparation reagents and solutions for various matrices
 - · Blood, Urine, Oral Fluid hair and other bodily fluids
- Accurate separation of components analogues
 - Avoid misinterpretation of target compounds
 - Avoid metabolic product exclusion or interference
 - Opioids Keto-moeity derivitization
- Removal of noise associated with sample matrix components
 - · Higher recovery, Better reproducibility
 - Less noise = Better chromatography
 - Hyper Sep Verify CX
- Enhance target compound stability
 - Better detection

Why test THCA?

Delta 9 THC (THC) is the most commonly abused illicit drug. The metabolite THCA indicates the ingestion of THC as opposed to passive contamination of the hair through the air.

Why test Hair?

Long detection time windows

Urine/blood/oral fluid: minutes to days detection widow <u>Hair: months to years detection window</u>

Applications for Hair testing

Death investigations Workplace drug testing Drug-facilitated crimes Violation of probation or parole Drivers license re-instatement

- Delta 9 THC (THC) is the most commonly abused illicit drug.
- The metabolite THCA indicates the ingestion of THC as opposed to passive contamination of the hair through the air.
- Hair is a very complex and variable matrix even after sample cleanup

- Sensitivity of GC TSQ 8000 EVO to THCA
- On-Column Injection of 8fg
- Use of a 0.05 pg/mg cutoff
- · Demonstrates the sensitivity sufficient for published cutoffs

• NCI - Specific transitions can be defined in NCI (Methane used as reagent gas), enhancing selectivity for both THC-COOH and the corresponding ISTD D3

Compound	Precursor ion (m/z)	Daughter ion (m/z)	Coll cell (mtorr)	Width	Time	CE	Q1 PW	Q3 PW
THC-COOH	620.2	493	1.5	0.5	0.05	15	0.7	0.7
THC-COOH	620.2	532	1.5	0.5	0.05	15	0.7	0.7
THC-COOH d3	623.2	496	1.5	0.5	0.05	15	0.7	0.7
THC-COOH d3	623.2	535	1.5	0.5	0.05	15	0.7	0.7

THCA in Hair - NCI transitions

PFAA Derivatized, Negative Ion Chemical Ionization - **50 fg** THCA and ISTD-D3

- Demonstrates very low noise level relative to the signal
- Zoom in the baseline by 100 times before we start seeing significant noise
- Possible to drop the concentration by a factor of 10 and still achieve the selectivity to accurately quantitate THCA

ThermoFisher SCIENTIFIC

2016 Qexactive GC & Exactive GC Orbitraps

The world leader in serving science

Exactive GC / Q Exactive GC

Exactive GC Internal Components

Note for reasons of internal product positioning, AQT quadrupole won't be highlighted in marketing material

Do Not Distribute

Instrument Overview

- Similar design to Q Exactive Plus and Q Exactive HF
- Axial field to optimize ion transfer
- Neutrals are removed from ion beam

Video of Basic Orbitrap Scan Modes

Retaining the lons in the Orbitrap

- Frequency of axial oscillations are independent of initial conditions of ions entering trap
- Therefore these oscillations used for mass determination
- Image current measured by outer split electrodes (no electron multiplier to replace!)
- Ion frequencies determine by complex superposition of measured ring oscillations through Fourier transform

What the Orbitrap Looks like

- Nominal mass: the mass of an ion calculated using the *integer mass* of the most abundant isotope of each element.
 - ignores the mass defect, where H=1, C=12, O=16
- <u>Monoisotopic mass</u>: the mass of an ion calculated using the <u>exact mass</u> of the most abundant isotope of each element.
 - includes the mass defect, where ¹H=1.0078, ¹²C=12.0000, ¹⁶O=15.9949
- Average mass: the mass of an ion calculated using the *relative average isotopic mass* of each element.
 where C=12.0111(12.000000) (0.9890) + (13.003355) (0.0110) = 12.011 Da
 H=1.00797, O=15.9994
- Isotopic abundance: the naturally occurring distribution of the same element with different atomic mass.
 ex: ¹²C=12.0000 = 98.9% ¹³C=13.0034 = 1.1%

How accurate is your mass?

Mass accuracy

$$\Delta m / z = \frac{m_{meas} - m_{true}}{m_{true}} \cdot 10^6$$

• Quadrupole MS
$$\Delta m / z = \frac{500.1 - 500.0}{500} \cdot 10^6 = 200 \, ppm$$

• Orbitrap MS
$$\Delta m/z = \frac{500.10314 - 500.10214}{500.10314} \cdot 10^6 = 2\,ppm$$

• Typical mass accuracy capability for various MS types:

Туре	Mass Accuracy
FT-ICR-MS	0.1 - 1 ppm
Orbitrap	0.5 - 1 ppm
Magnetic Sector	1 - 2 ppm
TOF-MS	3 - 5 ppm
Q-TOF	3 - 5 ppm

Source: Metabolomics Fiehn's lab

Compound ID confirmation

The Need for High Resolution

Q Exactive GC & Exactive GC

Thermo Scientific Q Exactive GC Hybrid Quadrupole-Orbitrap GC-MS/MS System

Unprecedented Depth in GC-MS Analysis

Thank you for your attention!Q&A

We are changing the game!

