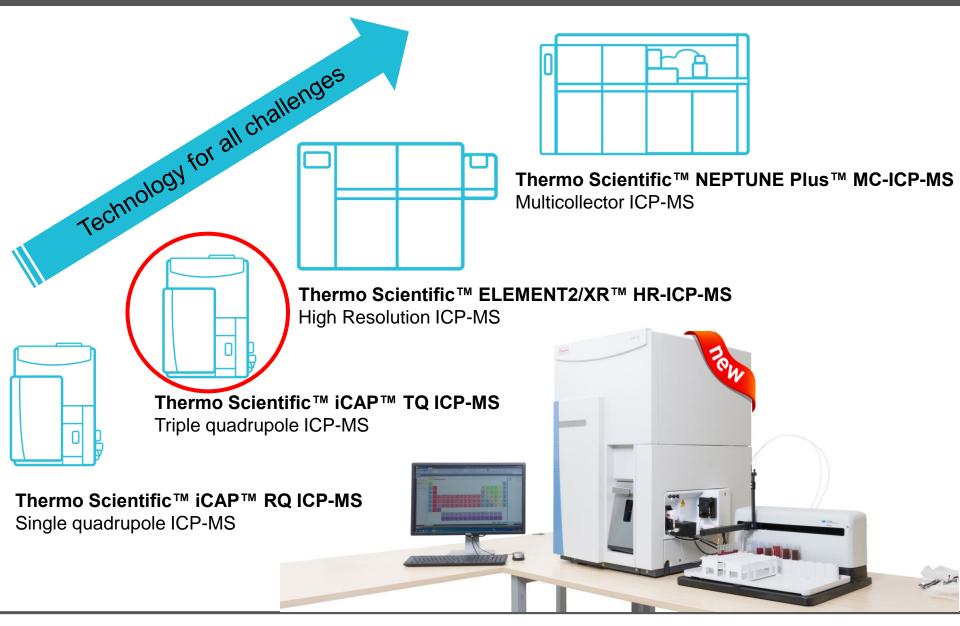

# SCIENTIFIC

Recent developments in ICP-MS - Introducing the Thermo Scientific iCAP TQ ICP-MS


Sofia 18.10.2017 Burkhard Stehl, Sales Manager Trace Elemental Analyzers ACO

The world leader in serving science

### Introducing our ICP-MS portfolio

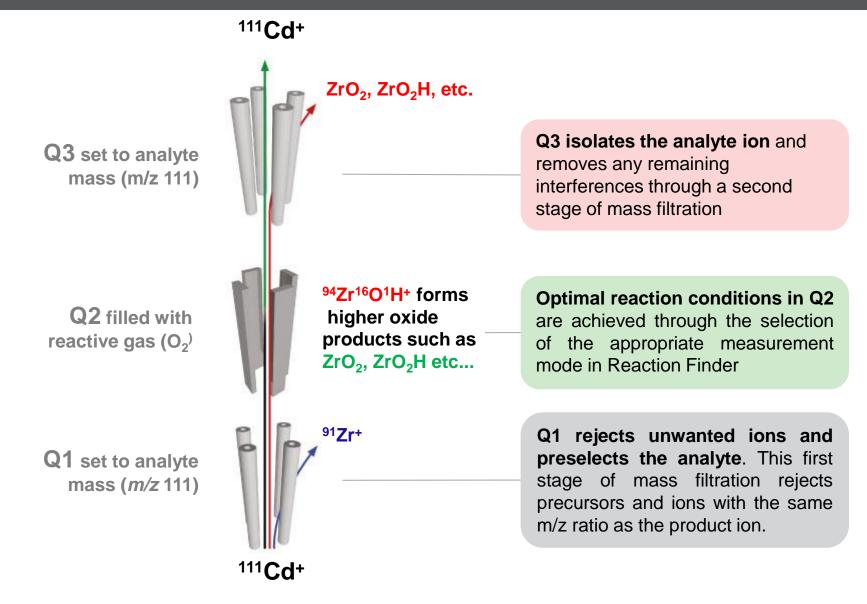


### Introducing our ICP-MS portfolio



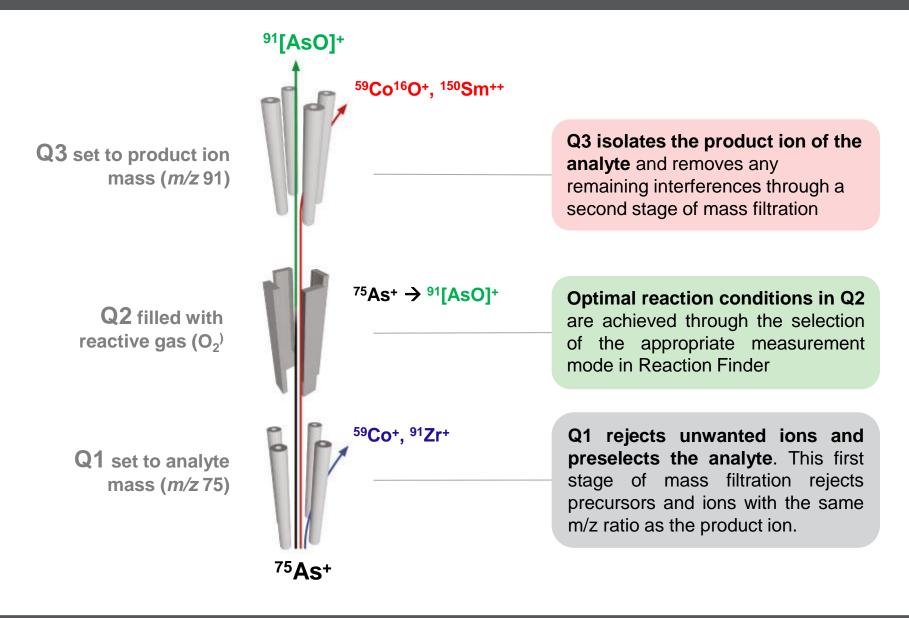
Thermo Fisher SCIENTIFIC Redefining trace element analysis - triple quadrupole ICPMS

# All the Power, None of the Complexity


Advanced interference removal
 Robust design for routine analysis
 Integrated automation options
 Flexible for advanced applications
 Unique ease of use – Reaction Finder

Triple quadrupole accuracy with single quadrupole ease of use

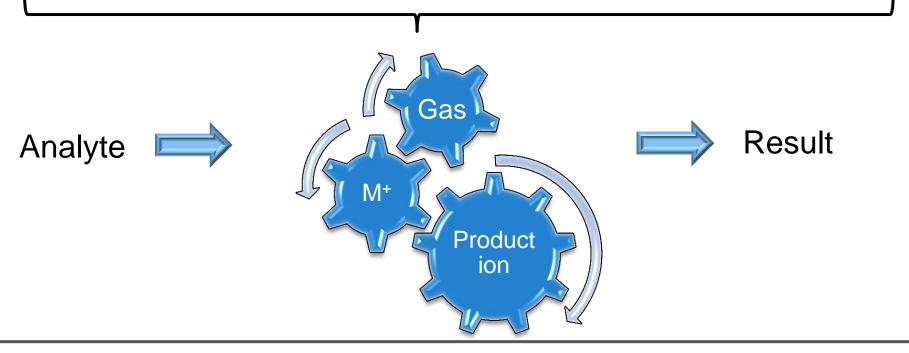





### iCAP TQ ICP-MS: How it works - on mass reaction mode

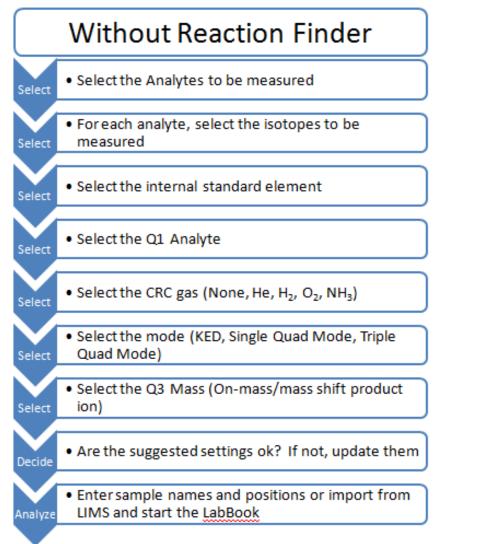


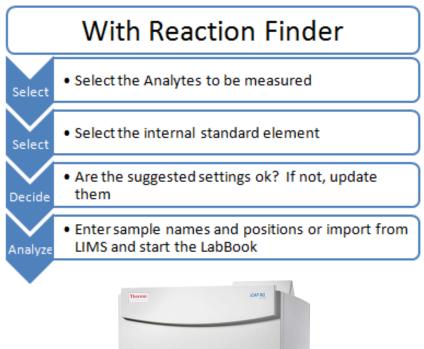



### iCAP TQ ICP-MS: How it works - product ion reaction mode






## All the **Power**, None of the **Complexity**


- Problem: when faced with measurement of a sample where interferences are expected, which is the best measurement mode?
- Solution: method development assistant intelligent Reaction Finder, iRF
  - Software concept for intelligent selection of all 3 parameters
  - Just select the element for analysis and the software does the rest





### Reaction Finder method development assistant



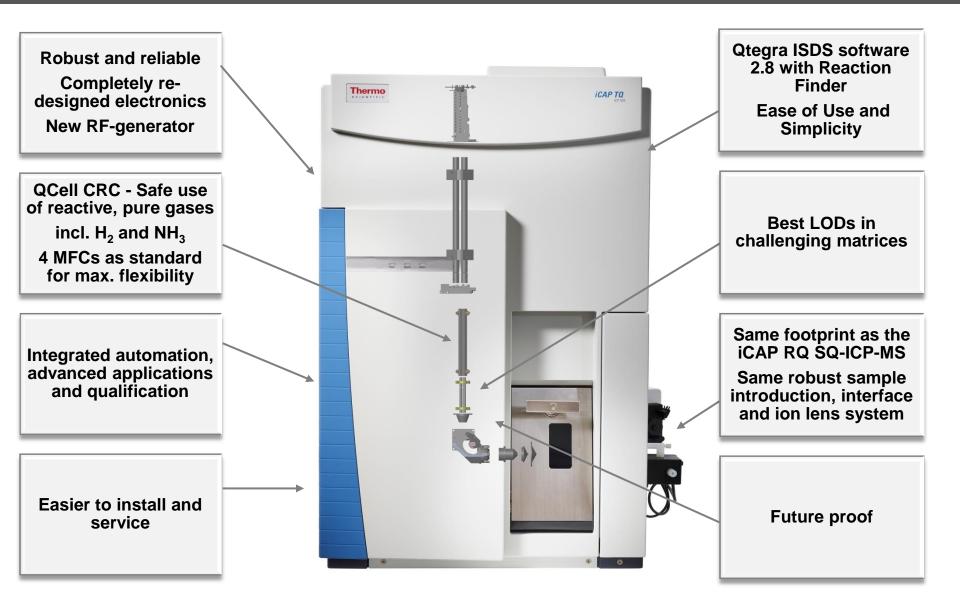






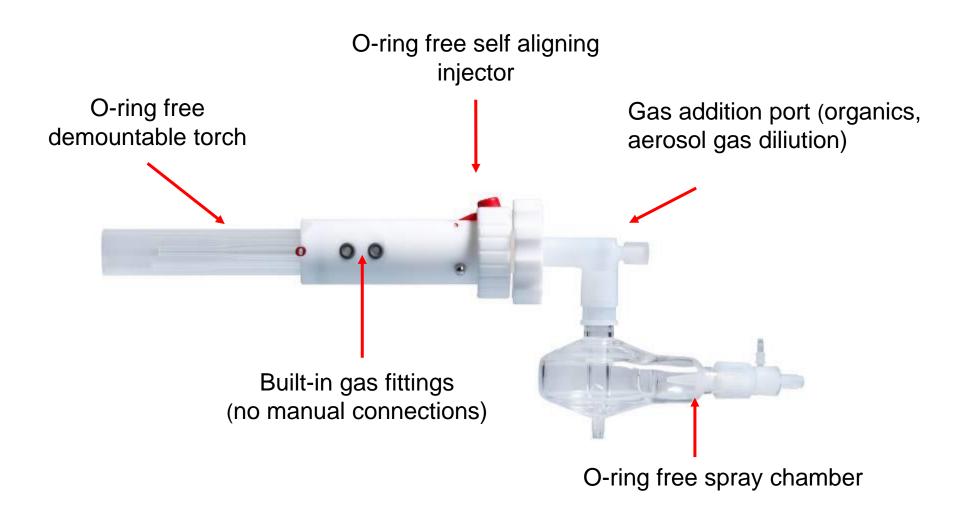
# Reaction Finder in Thermo Scientific<sup>™</sup> Qtegra<sup>™</sup> ISDS Software

Reaction Finder is a supplied applet that preselects optimised conditions for each target isotope in each available mode


For example for <sup>31</sup>P, the Reaction Finder database defines the following method parameters:

| Analyte type 🛛 🖷 | Analyte 🛛             | Is default isotope          | Reaction gas              | Q1 mass (u) 🛛 🔻       | Q3 analyte 🛛 🕇        | Is default Q3 Analyte             | Is default reaction   |
|------------------|-----------------------|-----------------------------|---------------------------|-----------------------|-----------------------|-----------------------------------|-----------------------|
| Isotope          | 31P                   | ~                           | O2 (Oxygen)               | 30.9737634            | 31P                   |                                   | <b></b>               |
| Isotope          | 31P                   | ✓                           | O2 (Oxygen)               | 30.9737634            | 31P.16O               | ✓                                 |                       |
| Isotope          | 31P                   | ~                           | O <sub>2</sub> (Oxygen)   | 30.9737634            | 31P.17O               |                                   |                       |
| Isotope          | 31P                   | ~                           | O <sub>2</sub> (Oxygen)   | 30.9737634            | 31P.18O               |                                   | III 🚽                 |
| Isotope          | 31P                   | ~                           | O <sub>2</sub> (Oxygen)   | 30.9737634            | 31P.16O2              |                                   |                       |
| Isotope          | 31P                   | ~                           | O <sub>2</sub> (Oxygen)   | 30.9737634            | 31P.17O.160           |                                   |                       |
| Isotope          | 31P                   | ~                           | O <sub>2</sub> (Oxygen)   | 30.9737634            | 31P.18O.16O           |                                   |                       |
| Isotope          | 31P                   | ~                           | O <sub>2</sub> (Oxygen)   | 30.9737634            | 31P.17O2              |                                   |                       |
| Isotope          | 31P                   | ~                           | O <sub>2</sub> (Oxygen)   | 30.9737634            | 31P.18O.17O           |                                   |                       |
| Isotope          | 31P                   | ~                           | O <sub>2</sub> (Oxygen)   | 30.9737634            | 31P.18O2              |                                   |                       |
| Isotope          | 31P                   | ~                           | H <sub>2</sub> (Hydrogen) | 30.9737634            | 31P                   |                                   | . 7                   |
| Isotope          | 31P                   | ~                           | H <sub>2</sub> (Hydrogen) | 30.9737634            | 31P.1H4               | >                                 | ■ 3                   |
| Isotope          | 31P                   | ~                           | None (No reaction gas)    | 30.9737634            | 31P                   | <b>v</b>                          |                       |
| Isotope          | 31P                   | ~                           | He (Helium)               | 30.9737634            | 31P                   | ~                                 |                       |
| and a second     | and the second second | Street, Street, Street, St. | and the second second     | and the second second | القررية فسترز المتحاك | And address of the second states, | Second and the second |

None of the complexity, all of the flexibility:


- Default reactions for all modes of iCAP TQ ICP-MS operation including collision/ reaction gases such as O<sub>2</sub>, H<sub>2</sub>, NH<sub>3</sub> and He
- Dedicated mass flow controller for each cell gas

### iCAP TQ ICP-MS – Feature summary





### Intuitive quick-connect sample introduction components





Bench level pop-out interface for easy ambidextrous access to the cones

#### and

the extraction lens for simplest possible routine maintenance

...without needing to break the vacuum





## Ion focusing: the RAPID lens

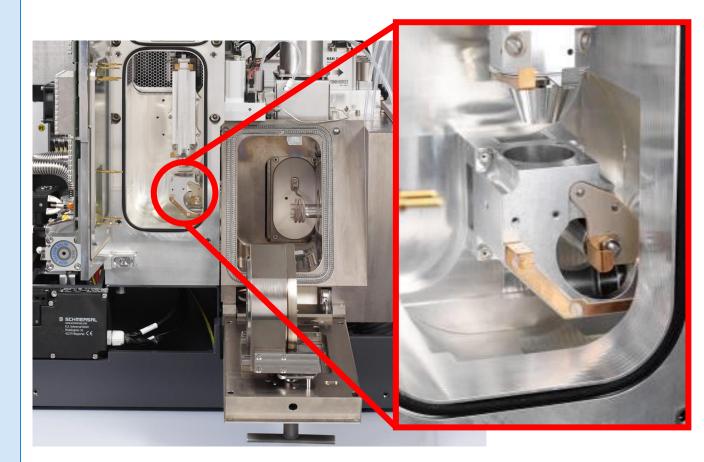
Right

Angle

Positive

lon

Deflection


90° ion focusing with total ion deflection in 3 dimensions

and

Elimination of neutral species

for

Highest signal to noise ratio of any ICP-MS







### **ThermoFisher** SCIENTIFIC

# **Applications - iCAP TQ ICP-MS**

The world leader in serving science

### Main application areas for triple quadrupole ICP-MS

### Meeting human health and environmental challenges

# Advancing development in metals, materials and chemicals



- Clinical Research and Toxicology
- Metallopharmaceuticals
- Environmental Analysis/Monitoring
- Food Safety

- Material Analysis
- Nanoparticle Characterization
- Metallurgy
- Energy Production



### iCAP TQ measurement modes

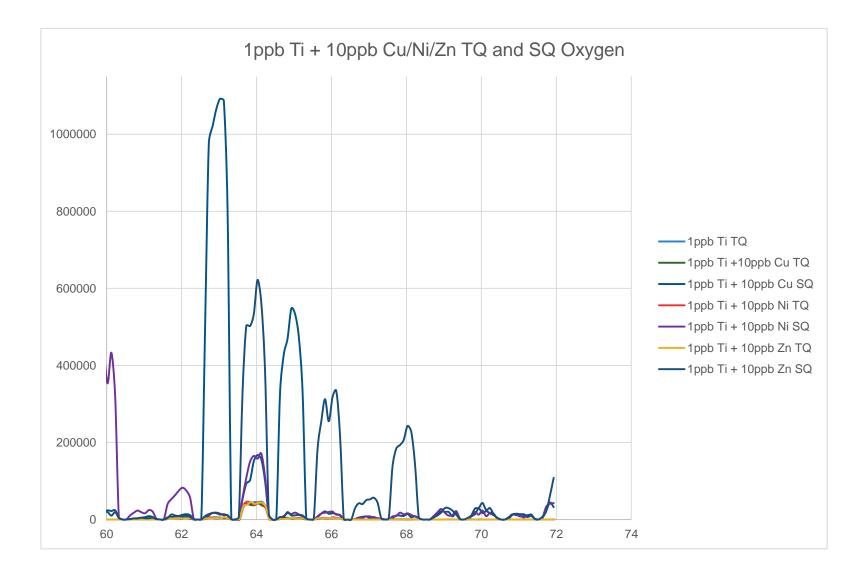
- SQ mode H<sub>2</sub>/He/KED/O<sub>2</sub>/NH<sub>3</sub>
- TQ mode He/H<sub>2</sub>/O<sub>2</sub>/NH<sub>3</sub>
  - Product ion measurement (analyte ion is reactive and moved to a new product ion mass).
    - <sup>32</sup>S + <sup>16</sup>O <sup>32</sup>S<sup>16</sup>O
  - On mass measurement (interfering ions are reactive and moved away from analyte ion).
    - <sup>172</sup>Yb Use NH<sub>3</sub> to remove<sup>156</sup>Gd<sup>16</sup>O





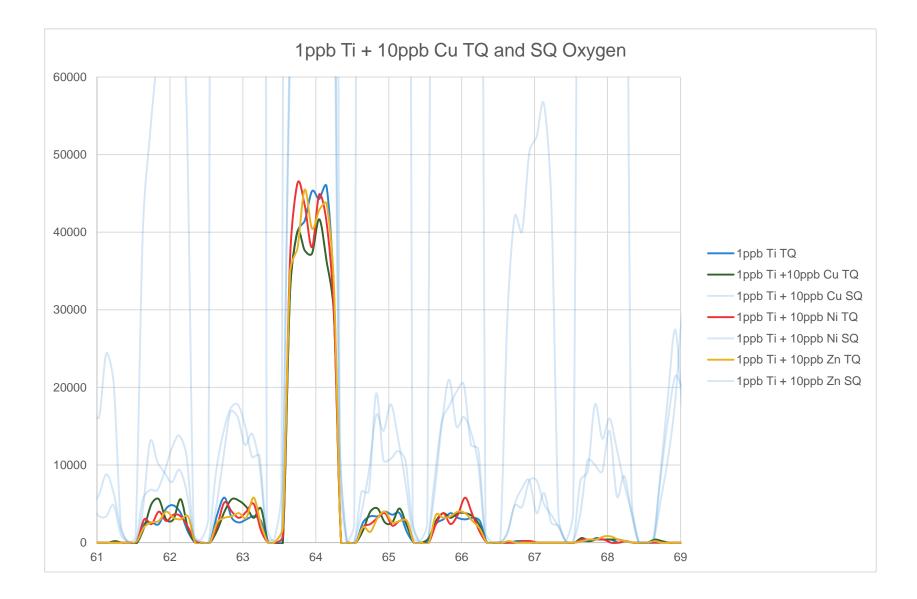
- Avoidance of spectral overlaps on reaction product ions with O<sub>2</sub> cell gas
- SQ ICP-MS can use same reactive chemistry
- TQ ICP-MS filtration of ions prior to QCell
- Spectral overlaps on product ions can cause errors in results.

| Q1               | Q3                                    | Overlaps         |                  |                  |
|------------------|---------------------------------------|------------------|------------------|------------------|
|                  |                                       | Ni               | Cu               | Zn               |
| Ti               | TiO                                   |                  |                  |                  |
| <sup>46</sup> Ti | 62 - <sup>46</sup> Ti <sup>16</sup> O | <sup>62</sup> Ni |                  |                  |
| <sup>47</sup> Ti | 63 - <sup>47</sup> Ti <sup>16</sup> O |                  | <sup>63</sup> Cu |                  |
| <sup>48</sup> Ti | 64 - <sup>48</sup> Ti <sup>16</sup> O |                  |                  | <sup>64</sup> Zn |
| <sup>49</sup> Ti | 65 - <sup>49</sup> Ti <sup>16</sup> O |                  | <sup>65</sup> Cu |                  |
| <sup>50</sup> Ti | 66 - <sup>50</sup> Ti <sup>16</sup> O |                  |                  | <sup>66</sup> Zn |


## Example - Titanium

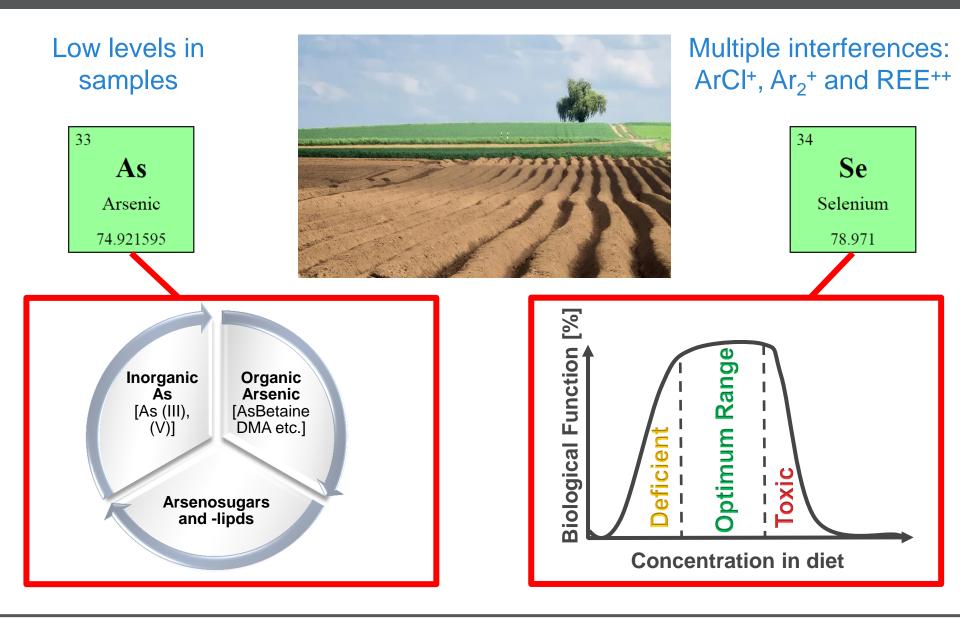
- Prepare 1ppb Ti solution spiked with 10ppb Ni, Cu and Zn
- Measure using SQ and TQ modes with oxygen in QCell
- Set up scan to view mass region 60-70
- Overlay spectra to compare data from SQ and TQ modes.






## 1ppb Ti – TQ and SQ modes (Oxygen)

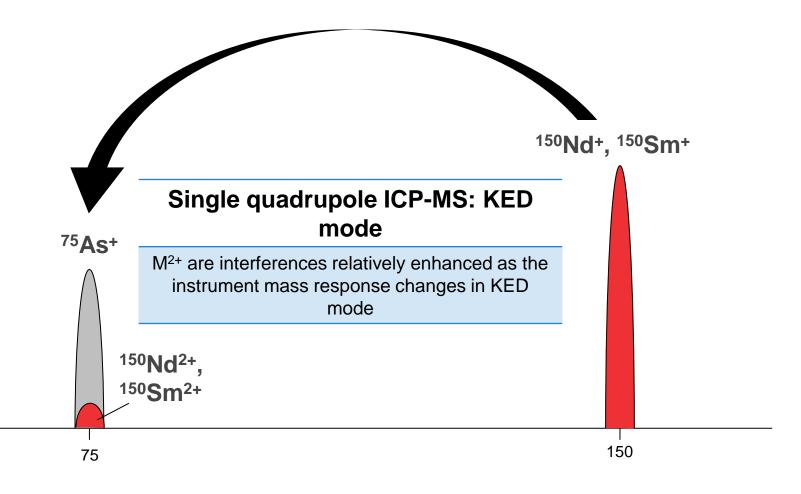





## 1ppb Ti – TQ – mass shift oxygen






### Arsenic and selenium in environmental samples





### As and Se analysis in the presence of REE's – the problem

Usual interferences on As and Se -  $Ar_2$ , ArCl - easy to remove using He KED, but if REE are present...





### As and Se analysis in the presence of REE's: the iCAP TQ solution

91[AsO]+ 94[SeO]+ 150Nd++, 150Sm++ 156Gd++, 156Dv++ Control ions entering the collision Q3 set to product ion mass cell using Q1 Use O<sub>2</sub> to efficiently convert As and Q2 filled with 75As+ → 91[AsO]+ <sup>78</sup>Se<sup>+</sup> → <sup>94</sup>[SeO]<sup>+</sup> reactive gas (O<sub>o</sub>) Se to AsO<sup>+</sup> and SeO<sup>+</sup> in Q2 (i.e. the collision cell) <sup>156</sup>Gd<sup>+</sup>, <sup>156</sup>Dy<sup>+</sup>, <sup>94</sup>Mo<sup>+</sup> <sup>150</sup>Nd<sup>+</sup>, <sup>150</sup>Sm<sup>+</sup>, <sup>91</sup>Zr<sup>+</sup> Q1 set to analyte mass REE<sup>++</sup> species don't react • 75As+ 78Se+ <sup>75</sup>As Method <sup>78</sup>Se Method Type Selectively detect AsO<sup>+</sup> (at mass to remove remove 91) and SeO<sup>+</sup> (at mass 94) free from Polyatomic 40Ar35Cl <sup>40</sup>Ar<sup>38</sup>Ar **KED** KED, H<sub>2</sub> REE<sup>++</sup> interference, using Q3 40Ca35Cl

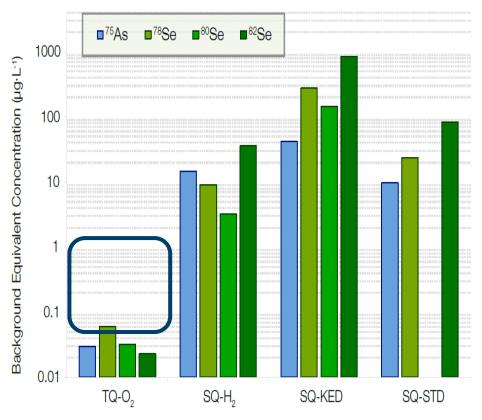
Isobaric

<sup>150</sup>Nd<sup>2+</sup>

<sup>150</sup>Sm<sup>2+</sup>

 $O_2$ 

<sup>156</sup>Gd<sup>2+</sup>


<sup>156</sup>Dv<sup>2+</sup>

to

 $O_2$ 

### As and Se with REE present - results in different modes

# Interference removal capability in each mode



- 1ppm Dy, Gd, Nd, Sm and Tb added
- Increased BECs observed for all SQmodes due to unresolved doubly charged REE interferences
- Hydrogen is suitable for removing Ar based polyatomics, but is not capable of fully removing REE<sup>2+</sup> interferences
- TQ-O<sub>2</sub> mode shows dramatically lower
  BEC values for both As and Se
- Accuracy assessed by analysis of AGV andesite reference material and a deep sea sediment
- Spike recovery tests also performed

#### How do we know iMS is effective?

#### Let's look at an example using Se in the presence of high As

| Sample                 | Added Signal for<br>Hypothetical <sup>75</sup> As <sup>18</sup> O (cps) | Calculated <sup>77/80</sup> Se<br>Isotope Ratio | Measured <sup>77/80</sup> Se<br>Isotope Ratio |
|------------------------|-------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|
| 0.5 ppm Se             | +0                                                                      | 0.1398                                          | 0.1398                                        |
| 0.5 ppm Se, 50 ppb As  | +1,260                                                                  | 0.1402                                          | 0.1394                                        |
| 0.5 ppm Se, 100 ppb As | +2,493                                                                  | 0.1410                                          | 0.1392                                        |
| 0.5 ppm Se, 250 ppb As | +7,298                                                                  | 0.1443                                          | 0.1393                                        |
| 0.5 ppm Se, 500 ppb As | +14,791                                                                 | 0.1497                                          | 0.1391                                        |

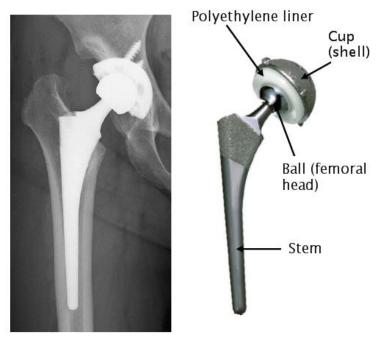
Measured isotope ratios are not corrected for mass bias

Addition of As to the sample solution has no effect on the  $^{77/80}$ Se ratio  $\rightarrow$  *iMS is working perfectly well!* 



# Determination of Ti in biological samples using ICP-MS




Titanium based components used for orthopedic and dental implants.

Degradation of these implants releases Ti (and Co, Ni and Cr too) into the body

<sup>48</sup>Ca<sup>+</sup>, PO<sup>+</sup>, SO<sup>+</sup>, SOH<sup>+</sup> interference on Ti isotopes


HR-ICP-MS effective technique, but expensive

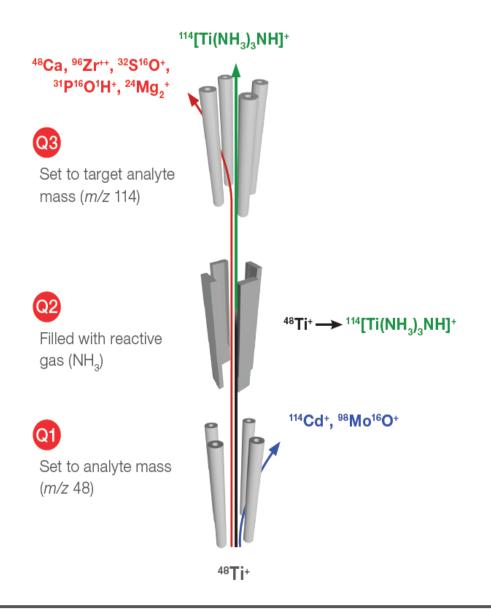




# Determination of Ti in biological samples using ICP-MS

- Preliminary work started to measure titanium in hip samples, via serum samples
- Three modes compared:- He KED, SQ NH<sub>3</sub> and TQ NH<sub>3</sub>
- Aim: To test if TQ mode gives low enough LOQ to enable determination of the normal Ti levels in patient samples
- Lowest LOQ only possible with Ti isotope at m/z 48 (abundance 73.8%), but serum high in Ca (<sup>48</sup>Ca interference
- Solution: Use ammonia as the reaction gas to isolate m/z 48 Ti from Ca






## Reaction of Ti with NH<sub>3</sub>: how it works

 Q1 – set to transmit Ti, potential interferents on the product ion (e.g. <sup>114</sup>Cd) and lower mass interference precursors (e.g. <sup>31</sup>P, <sup>16</sup>O) rejected.

• Q2 – filled with  $NH_3$ . Ti collides and generates a range of adducts including  ${}^{48}\text{Ti}(NH_3)_3NH^+$  at mass 114

Q3 – set to transmit mass 114,
 other masses rejected.





### Comparison of different ICP-MS modes for Ti analysis

### Sample matrix - 1:10 diluted serum plus 1ppm Cd, all data in µg/L

| Sample i.d. | He KED<br>mode, on<br>mass at <sup>48</sup> Ti | Ti SQ NH <sub>3</sub><br>mode, at<br>mass 114 | Ti TQ NH <sub>3</sub><br>mode, at<br>mass 114 | Ti reported value,<br>measured at <sup>47</sup> Ti<br>using HR-ICP-MS |
|-------------|------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------|
| Serum L-1   | 167                                            | 1800                                          | 6.64                                          | 6.8                                                                   |
| Serum L-1   | 262                                            | 1850                                          | 6.38                                          | 6.8                                                                   |
|             | rference plus<br>al PO <sup>+</sup> etc.       | Contr                                         | ribution from                                 | <sup>114</sup> Cd                                                     |

Only TQ NH<sub>3</sub> mode is capable of providing the correct Ti result



### Arsenic measurement in the presence of cobalt

- Determination of elemental impurities in Vitamin B12
- Vitamin B12 contains Co (approx. 4% (w/w))
- Elements to be measured As, Cd, Pb and Hg the so-called 'Big Four' in pharmaceutical analysis
- Digest sample in nitric acid
- Run all elements in SQ-KED mode and also As in TQ-O<sub>2</sub> mode (as <sup>75</sup>As<sup>16</sup>O)





### Performance in SQ and TQ modes

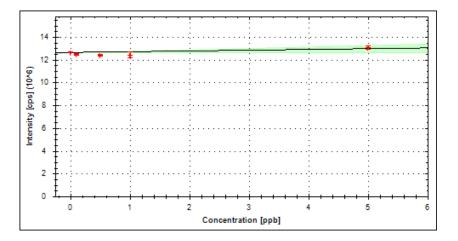
| Concentration<br>Vitamin B12 | Signal at<br><i>m/z</i> =59<br>(SQ-KED) [CPS] | Signal at<br><i>m/z</i> =75<br>(SQ-KED) [CPS] | BEC in SQ-<br>KED mode<br>[ng⋅g⁻¹] | Signal at<br><i>m/z</i> =75<br>(TQ-O <sub>2</sub> ) | BEC in<br>TQ-O₂ mode<br>[ng⋅g⁻¹] | Spike recovery<br>in TQ-O <sub>2</sub> mode<br>[%] |
|------------------------------|-----------------------------------------------|-----------------------------------------------|------------------------------------|-----------------------------------------------------|----------------------------------|----------------------------------------------------|
| BLK                          | 73                                            | 2                                             | 0.0008                             | 4                                                   | 0.0007                           | N/A                                                |
| 0.0001 mg·mL <sup>-1</sup>   | 202,455                                       | 13                                            | 0.003                              | 9                                                   | 0.001                            | 100.1                                              |
| 0.001 mg·mL¹                 | 2,174,144                                     | 88                                            | 0.02                               | 10                                                  | 0.001                            | 99.5                                               |
| 0.01 mg·mL¹                  | 24,003,087                                    | 852                                           | 0.21                               | 8                                                   | 0.001                            | 101.8                                              |
| 0.1 mg·mL¹                   | 243,093,619                                   | 8744                                          | 2.47                               | 18                                                  | 0.002                            | 106.4                                              |

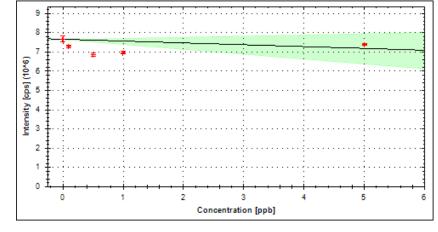
- SQ-KED mode elevated BEC due to CoO contribution that cannot be suppressed with He KED.
- TQ-O<sub>2</sub> mode measure AsO at m/z 91 free from CoO interference
- Accurate spike recovery (1 ng/g As) achieved with increasing concentrations of Vitamin B12 in TQ-O<sub>2</sub> mode



### iCAP TQ on mass measurement example

- Measurement of Yb in a Gd matrix
- Same number of isotopes
- Similar abundances
- 16 mass units apart


| Gd 64      | Yb 🔊 70   |
|------------|-----------|
| 157.25     | 173.04    |
|            |           |
|            |           |
| Gadolinium | Ytterbium |

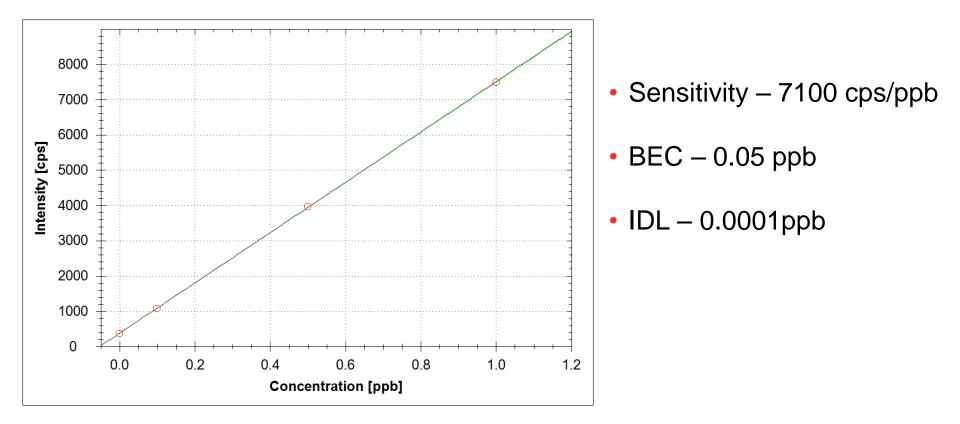

| Symbol | Mass     | Abundance |
|--------|----------|-----------|
| 152Gd  | 151.9198 | 0.20      |
| 154Gd  | 153.9209 | 2.18      |
| 155Gd  | 154.9226 | 14.80     |
| 156Gd  | 155.9221 | 20.47     |
| 157Gd  | 156.9240 | 15.65     |
| 158Gd  | 157.9241 | 24.84     |
| 160Gd  | 159.9271 | 21.86     |

| Symbol | Mass     | Abundance |
|--------|----------|-----------|
| 168Yb  | 167.9339 | 0.13      |
| 170ҮЬ  | 169.9348 | 3.05      |
| 171Yb  | 170.9363 | 14.30     |
| 172Yb  | 171.9364 | 21.90     |
| 173Yb  | 172.9382 | 16.12     |
| 174Yb  | 173.9389 | 31.80     |
| 176Yb  | 175.9426 | 12.70     |

### Yb in a Gd matrix SQ

- Calibration 0 5 ppb Yb in 10 ppm Gd no gas
- Calibration 0 5 ppb Yb in 10 ppm Gd KED
- NH<sub>3</sub> reacts with many of the polyatomic ions that interfere with the REE however NH<sub>3</sub> also reacts quickly with some REE
- Pr, Eu, Dy, Ho, Er, Tm and Yb are less reactive with NH<sub>3</sub>



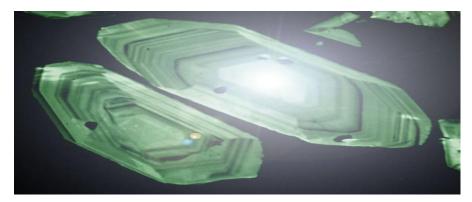



<sup>172</sup>Yb, KED mode



<sup>172</sup>Yb, no gas mode

## Yb measurement in 10pm Gd – TQ NH<sub>3</sub> mode




- Yb measured on mass at m/z 172
- $NH_3$  flow 0.9 ml/min



### Isotope ratio example - Pb in the presence of Hg and REE

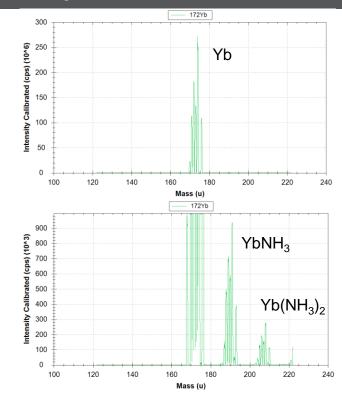
- Pb/Pb dating in geochronology
- Non radiogenic isotope <sup>204</sup>Pb used to correct for lead naturally occurring
- <sup>204</sup>Pb used as reference isotope for which others are compared
- <sup>204</sup>Pb has direct spectral overlap from <sup>204</sup>Hg that could be present
- Difficult to resolve these peaks even with HR-ICP-MS
- Normally use mathematical equations which could introduce errors

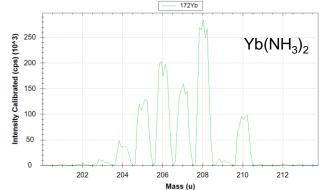




### Pb isotope ratio results with Hg added – SQ mode

| Sample i.d         | <sup>204</sup> Pb/ <sup>208</sup> Pb |
|--------------------|--------------------------------------|
| Average ratio      | 0.02671                              |
| 1ppb Pb            | 0.02571                              |
| 1ppb Pb + 5ppb Hg  | 0.40942                              |
| 1ppb Pb + 10ppb Hg | 0.82649                              |
| 1ppb Pb + 20ppb Hg | 1.61867                              |


- Measure isotope ratios in SQ mode
- Solutions with increasing Hg concentration
- Isotope ratio increases with increasing m/z 204 intensity




## Isotope ratio with Hg and Yb added – SQ NH<sub>3</sub> mode

| Sample i.d.       | <sup>204</sup> Pb/ <sup>208</sup> Pb |
|-------------------|--------------------------------------|
| Theoretical       | 0.02671                              |
| 1ppb Pb           | 0.02571                              |
| 1ppb Pb + 5ppb Hg | 0.02572                              |
| 1ppb Pb + 1ppm Yb | 0.07960                              |

- SQ mode using NH<sub>3</sub> in the QCell
- Hg reacts, so Pb interference free at m/z 204
- However, Yb forms NH<sub>3</sub> cluster that SQ mode cannot resolve







### Isotope ratio with Hg and Yb added – TQ NH<sub>3</sub> mode

| Sample i.d.        | <sup>204</sup> Pb/ <sup>208</sup> Pb |
|--------------------|--------------------------------------|
| Theoretical        | 0.02671                              |
| 1ppb Pb            | 0.02546                              |
| 1ppb Pb + 5ppb Hg  | 0.02567                              |
| 1ppb Pb + 10ppb Hg | 0.02542                              |
| 1ppb Pb + 20ppb Hg | 0.02563                              |
| 1ppb Pb + 1ppm Yb  | 0.02566                              |

- Measurements repeated in TQ NH<sub>3</sub> mode
- Again, Hg reacts with NH<sub>3</sub>, so Pb free from Hg interference at m/z 204
- Yb rejected by Q1 so cannot form NH<sub>3</sub> cluster interference on m/z 204
- Accurate <sup>204</sup>Pb/<sup>208</sup>Pb ratios obtained in TQ mode

Standard mode (i.e. no cell gas) with SQ operation

He KED single quadrupole mode with cell pressurised with He and KED applied

TQ  $NH_3 / H_2 / O_2$  triple quadrupole mode with CRC pressurised with reaction gas Q1 set to analyte mass and Q3 set to either analyte mass (on mass analysis) or product ion (mass shift analysis)

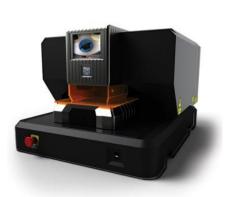
- Flexibility and usability of both single and triple quadrupole modes
  - Full multielemental analysis with dedicated TQ interference removal for difficult analytes and simple He KED mode for everything else **in one analytical run**

### Redefining TQ-ICP-MS - accessories

#### Fully integrated autosampler and autodilution solutions



Elemental Scientific prepFAST




CETAC SDX<sub>HPLD</sub>

Fully integrated speciation (IC and LC) and laser solutions












## Redefining TQ-ICP-MS – ChromControl for speciation



### IC / LC / GC-ICP-MS with fully integrated software control ChromControl plug-in based on Chromeleon<sup>™</sup> 7.2 CDS





# **Questions?**

### thermoscientific

### www.thermofisher.com/iCAPTQ

www.thermofisher.com/TQ-ICP-MS

# Thermo Scientific iCAP TQ ICP-MS

Redefining triple quadrupole ICP-MS with unique ease of use