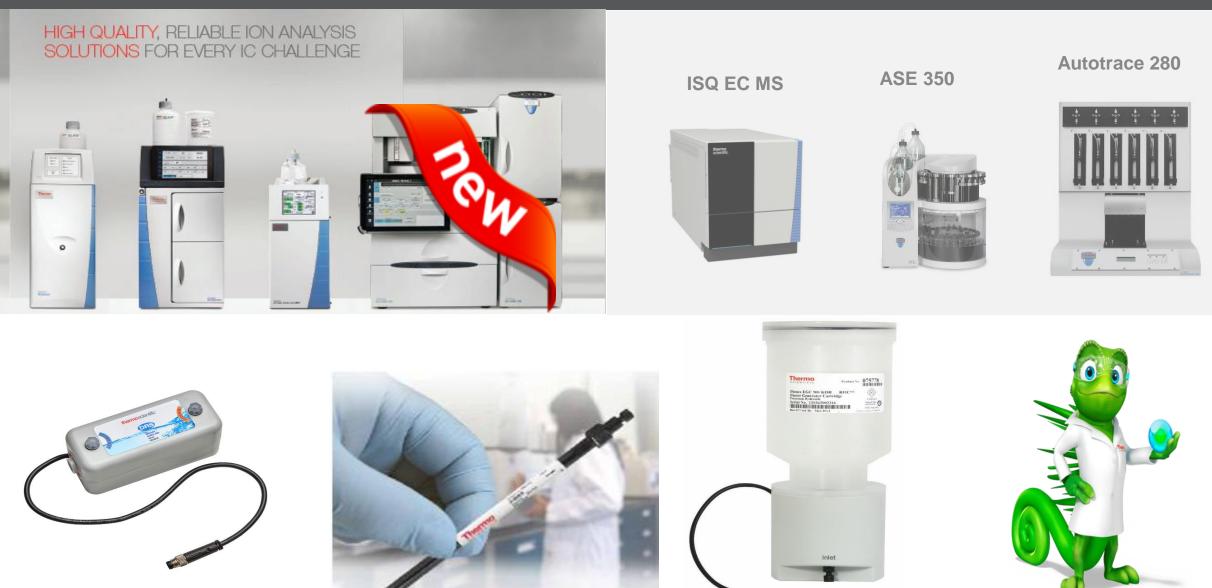


ThermoFisher SCIENTIFIC

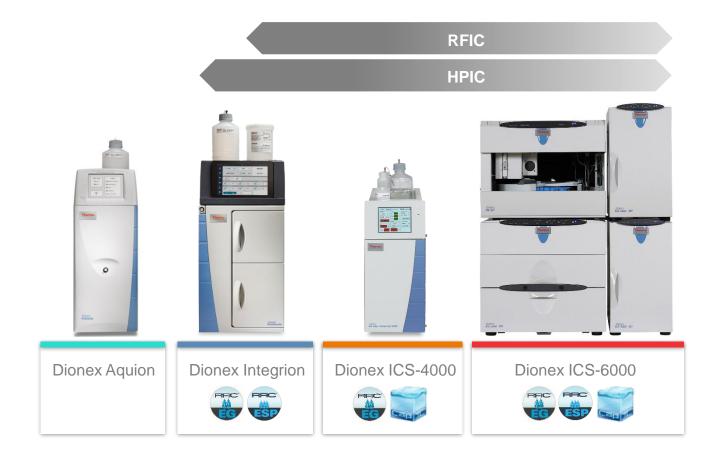
Ion Chromatography products, IC and IC/MS applications for environmental and food safety laboratories

Roman Repas Technical Sales Manager IC/SP, Emerging Markets Thermo Fisher Scientific GmbH Dreieich, Germany Overview of IC/SP portfolio


IC systems overview

Analysis of inorganic anions and low concentrations of oxyhalides IC/MS introduction

IC/MS applications for environmental and food safety laboratories



2019 IC/SP Portfolio

Ion Chromatography Systems

Dionex Aquion IC

- reliable IC system with straightforward operation
- for IC users in budget limited labs
- built on a compact platform
- low operating costs

Dionex Integrion HPIC

- for routine users who run an established method
- efficient IC analyses with comprehensive

applications solutions

- interactive wellness features

Dionex ICS-4000 Capillary HPIC

- for high throughput labs
- reduce cost of system operation
- producing less waste

Dionex ICS-6000 HPIC

- for IC users in routine and research
- flexible, robust system
- ultimate in productivity
- modular IC configurable as a single or dual channel system
- interactive wellness troubleshooting knowledgebase consumables installation guidelines
- smart monitoring

Dionex ICS - 6000 IC System Detectors

Conductivity

Detection of anions and cations with suppressed conductivity detection

ICP-MS Elemental speciation coupled with high sensitivity

Spectrophotometric

Selective determination of UV and visible absorbing compounds that allows post-column and precolumn derivatization techniques

Electrochemical

Selective and sensitive detection of electroactive compounds

Mass Spectrometry

Determine ionic and polar compounds that other techniques just can't match

Dionex IC Autosamplers

Thermo Scientific Dionex AS-DV Autosampler

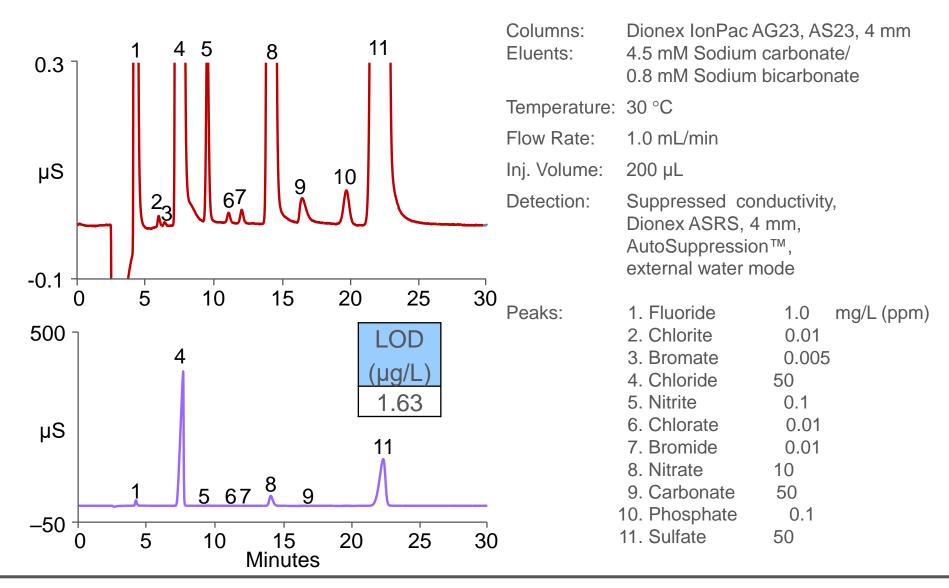
Entry Level

- Carousel Type
- 50 x 5 mL PolyVials
- 50 x 0.5 mL PolyVials
- Filter Caps
- Full Loop, Concentrator
- Simultaneous Injection
- Optional 6-port/10-port Valve

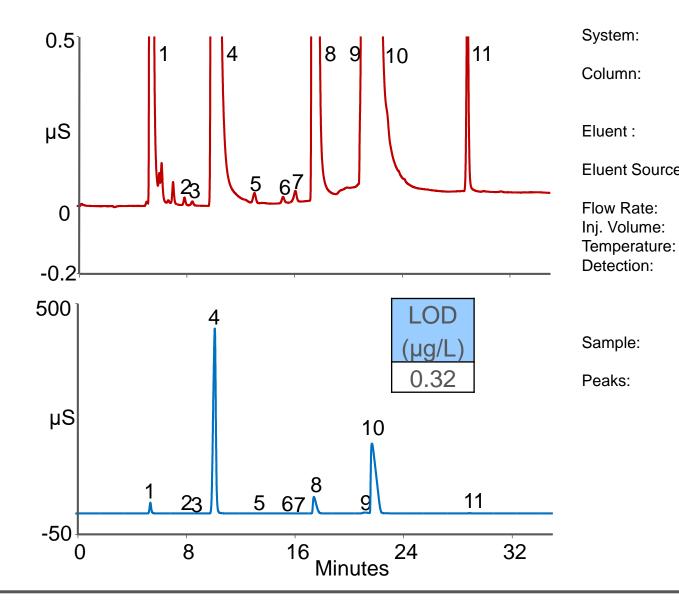
Thermo Scientific Dionex AS-HV Autosampler

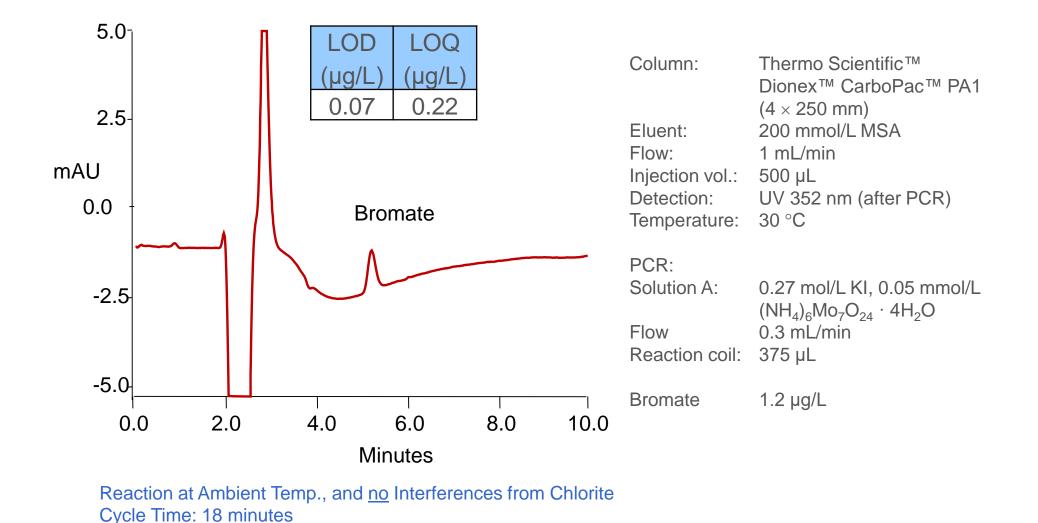
High Volume

- X0Z-Type
- 24 x 250 mL TCF
- 15 x 250 mL Bottles
- Full Loop Injection, Concentrator Loading
- Simultaneous Injection
- Peristaltic Pump for sample loading and Needle Port Rinse


Thermo Scientific Dionex AS-AP Autosampler

For IC, BioIC, and Cap IC


- Carousel-Type
- 81 x 10 mL Vials
- 120 x 1.5 mL or 0.3 mL Vials
- 3 x 96 Well Plates
- 3 x 384 Well Plates
- Full/Partial Loop, Limited Sample, Concentrator Loading
- Push and Pull Loop injection
- Tray Thermostat
- Optional Injection Valve
- Optional Diverter Valve
- Optional Fractionation valve
- Sequential Injection
- Simultaneous Injection
- Autodilution


Bromate in Simulated Drinking Water

Thermo Scientific[™] Dionex[™] ICS-5000⁺ HPIC system Thermo Scientific[™] Dionex[™] IonPac[™] AS19-4µm + guard $(4 \times 250 \text{ mm})$ 10 mM KOH from 0 to 10 min, 10–45 mM KOH from 10 to 25 min **Eluent Source:** Thermo Scientific[™] Dionex[™] EGC 500 KOH Cartridge 1.0 mL/min 200 µL 30 °C Suppressed Conductivity, Thermo Scientific[™] Dionex[™] AERS[™] 500 suppressor, 4 mm AutoSuppression, recycle mode Simulated Drinking Water 1. Fluoride 1.0 mg/L 2. Chlorite 0.005 3. Bromate 0.005 4. Chloride 50.0 5. Nitrite 0.005 6. Chlorate 0.005 7. Bromide 0.005 8. Nitrate 10.0 9. Carbonate 25.0 10. Sulfate 50.0 11. Phosphate 0.20

Bromate Determination with Acidic Eluent - ISO 11206

Mass spectrometry (MS), as a detection technique for ion chromatography (IC), has recently gained popularity due to the increasing demand for sensitivity, selectivity, confirmation of identity, and structural interpretation.

IC-MS

- Increases analytical confidence by providing sensitive detection and mass confirmation in addition to retention time often without the need for sample pre-treatment
- Suitable for a wide range of applications including organic acids, perchlorate, polar pesticides, polar metabolites, amines, carbohydrates

Environmental

- Government municipalities
- Contract laboratories
- Utility providers
- Regulators (EPA)

Food & Beverage

- Contract laboratories
- Beverage manufacturers
- Regulators (FDA)
- Academic researchers

Pharma/Biopharma

- Pharmaceutical co.
- CROs
- Academic researchers
- Regulators (FDA)

IC-MS

Single quadrupole MS offers:

- Higher sensitivity and more accurate quantitation than conductivity detection
- Chromatographic peak mass confirmation, eliminating false negatives and false positives

Primary Applications

• Perchlorate (<u>AU72507</u>, <u>AN72587</u>)

MS is a more selective detector than conductivity in that it monitors the mass/charge ratio (m/z) of the analyte and can provide lower detection limits in high-ionic-strength matrices than conductivity; allows quantification of perchlorate at 99/101 m/z in high-ionic strength matrices at low ppb level

Cations and small amines (AN72609, AB72405)

Because the mass range of these analytes is usually below 100 mass-to-charge ratio (m/z) an ideal MS detector for these analyses will have the features of mass accuracy and high mass transmission efficiency in the low mass range (15–100 m/z) while maintaining the necessary mass resolution

Determination of Common Anions and Organic Acids using IC-MS (<u>AN243</u>)

IC-MS/MS

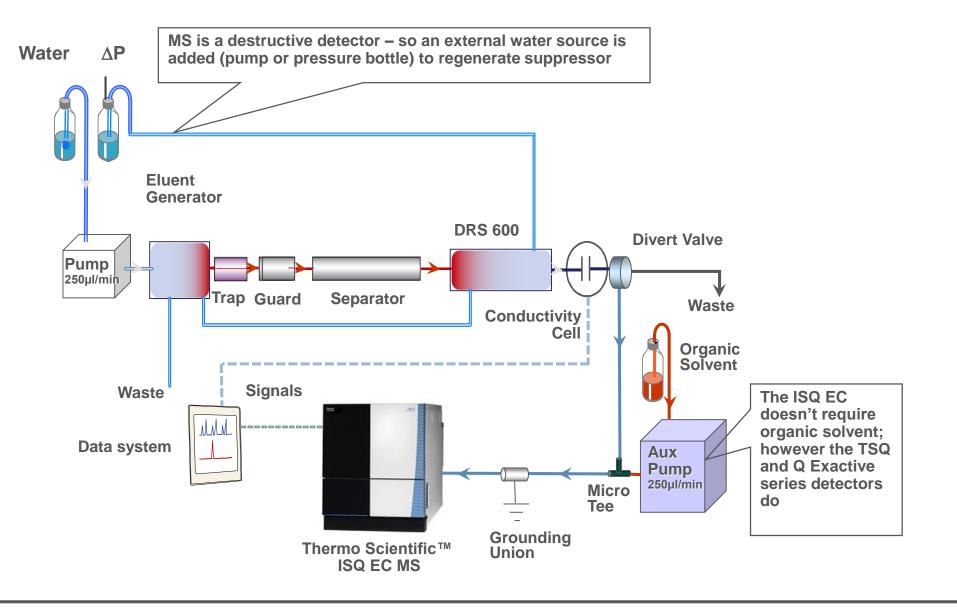
Coupling IC with the highly selective detection of a triple quadrupole mass spectrometer allows:

- Unambiguous identification of substance peaks
- Reduction of matrix interference effects, which improves the sensitivity and lowers the detection limits

Primary applications

- Polar pesticides in water
 - Glyphosate and AMPA in water (AN666)
 - The analysis of glyphosate and other polar compounds presents a difficult analytical challenge. Their polarity does not allow the direct analysis by reversed-phase HPLC, so alternative methods need to be applied.
 - Ion chromatography is the preferred separation technique for polar ionic analytes. Mass spectrometry offers very low detection limits and high detection selectivity. The system robustness allows the analysis of food and environmental samples.
- Disinfection byproducts in drinking water
 - HAAs in water (AN630, AN65196)
 - By comparison to the conventional EPA methods using GC with ECD, the combination of ion chromatography and mass spectrometry (IC-MS and IC-MS/MS) offers sensitive and rapid detection without the need for sample pretreatment.

IC-HRAM


High Resolution Accurate Mass (Thermo Scientific Orbitrap) spectrometers generate high-resolution and accurate-mass data, thereby enhancing specificity in trace analyte detection, characterization, and quantitation.

Primary applications

- Metabolomics
 - The outstanding resolution of IC has led to the differentiation of many isobaric and isomeric polar metabolites. In addition, IC
 has shown broad coverage of glycolysis and the tricarboxylic acid cycle (TCA cycle) intermediates. Significant changes of TCA
 cycle metabolites in cancer stem cells versus non-stem cancer cells were observed
- Food Safety
 - Anionic pesticides in Fruits and Vegetables quantification and identification of pesticides found regularly in samples in addition to automated qualitative screening of unexpected pesticide residues
- Lithium Ion battery Degradation Products
 - IC combined with HRAM effectively characterizes ionized/ionizable components in electrode samples from aged Li Ion batteries

IC-MS Technology: System Schematic

Thermo Scientific ISQ EC/EM Single Quadrupole Mass Spectrometers

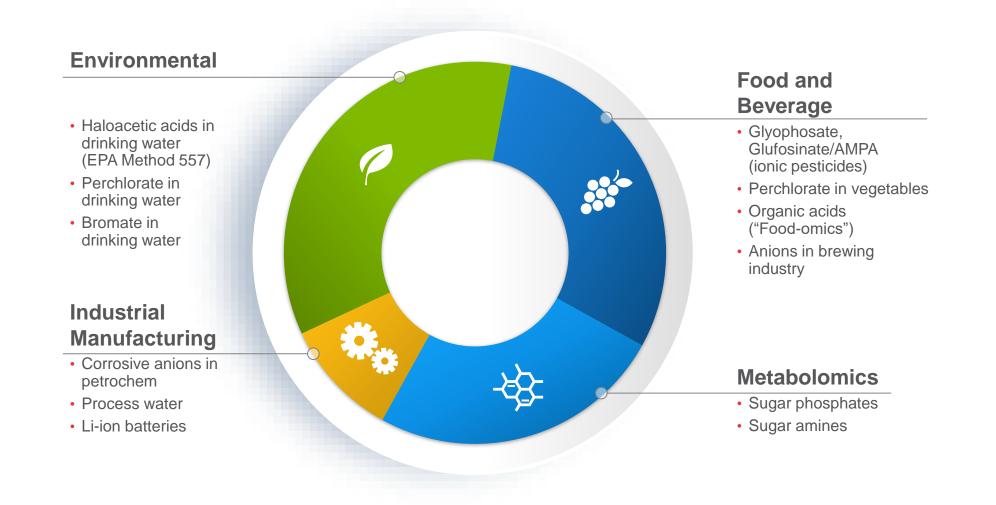
- For ion chromatography (IC-MS) and liquid chromatography (LC-MS)
- Built for **routine** analysis and long term signal stability
- Controlled by Thermo Scientific[™] Chromeleon[™] Chromatography Data System (CDS)

Thermo Scientific[™] ISQ[™] EC Single Quadruple Mass Spectrometer

- Mass range 10-1250 m/z
- HESI only
- Perfect for IC-MS or LC-MS

Thermo Scientific[™] ISQ[™] EM Single Quadruple Mass Spectrometer

- Mass range 10-2000 m/z
- HESI and APCI Options
- Perfect for LC-MS


Performance and Specifications

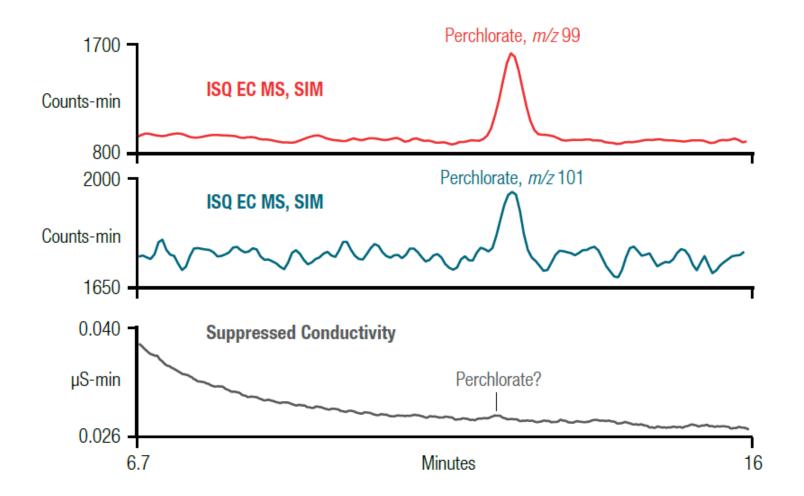
Specification	ISQ EM	ISQ EC		
Mass Range (m/z)	10 – 2000	10 – 1250		
Source Type	ESI and ESI/APCI	ESI		
Supported Modes	Full scan / SIM			
Flow Rate	Up to 2 mL/min			
Scan Rate, max (Da/s)	Up to 20,000			
SIM Sensitivity (ESI+)	10 pg Reserpine			
	SN > 400:1			
SIM Sensitivity (ESI-)	20 pg Nitrophenol			
	SN > 500:1			
SIM Sensitivity (APCI+)	10 pg Reserpine	n/a		
	SN > 1000:1	n/a		
SIM Sensitivity (APCI-)	20 pg Nitrophenol	n/a		
	SN > 80:1	n/a		
Polarity Switching	Yes, 25 ms			
Mass Resolution	Unit (≤ 1.0 Da)			
Mass Accuracy	< ± 0.1 Da			
Mass Stability	< 0.1 Da over 48 h			
Digital Dynamic Range	> 10 ⁷			
Power	110–240 VAC 50/60Hz			

- ✓ Enhanced low mass detection for IC/MS
- ✓ Optional larger mass range and ESI/APCI combination source
- Very fast scanning for better UHPLC compatibility
- ✓ Fast polarity switching for experiments with positive and negative scans
- ✓ Global power supply with 110V 240V built-in support

Outstanding performance and speed

- <u>AN151</u> Determination of Perchlorate in Environmental Waters by IC-MS
- <u>AN243</u> Determination of Common Anions and Organic Acids using IC-MS
- <u>AN263</u> Determination of Endothall in Water
- <u>AN269</u> Identification and Quantification at ppb Levels of Common Cations and Amines by IC-MS
- <u>AN276</u> Direct Determination of Fluoroacetic Acid in Water by IC-MS
- <u>AN409</u> Determination of Acrylamide in Water
- <u>AN454</u> Analysis of Haloacetic Acids in Drinking Water by IC-MS/MS
- <u>AN479</u> Quantification of Polyphosphonates and Scale Inhibitors in High Ionic Strength Matrix Effluents Using IC- MS/MS
- <u>AN491</u> Analysis of Glyphosate and AMPA in Environmental Water by IC-MS/MS
- <u>AN622</u> Pathway-Targeted Metabolomic Analysis in Oral/Head and Neck Cancer Cells using IC-MS
- AN630 EPA Method 557 Analysis of Haloacetic Acids, Dalapon, and Bromate in Drinking Water by IC-MS/MS
- <u>AN661</u> Fast routine analysis of polar pesticides in foods by suppressed ion chromatography and mass spectrometry
- AN666 Routine analysis of polar pesticides in water at low ng/L levels by IC-MS/MS
- <u>AN1000</u> Determination of Small Organic Acids in Sea Water by IC-MS

- <u>AN65196</u> Tomorrow's quantitation with the TSQ Fortis mass spectrometer: robust, reproducible quantitation workflows of haloacetic acids, bromate, and dalapon in water according to EPA Method 557
- <u>AN65201</u> Tomorrow's quantitation: robust, reproducible quantitation workflows of perchlorate in water with IC-MS/MS
- <u>AN72587</u> Determination of perchlorate by U.S. EPA Method 332.0 using a compact ion chromatography system coupled with mass spectrometry
- <u>AN72609</u> Using Ion Chromatography with Electrospray Ionization Mass Spectrometry for the Determination of Cations and Amines in Alkanolamine Scrubbing Solutions
- <u>AN72482</u> Determination of urea in ultrapure water by IC-MS/MS
- <u>AB104</u> Determination of 32 Low Molecular Mass Organic Acids in Biomass by IC-MS
- <u>AB72363</u> Detection of common organic acids using a compact IC system coupled with MS
- <u>AB72403</u> Fast determination of inorganic cations and low mass amines in a spoiled grape juice sample using IC-MS
- <u>AB72404</u> Fast determination of inorganic cations and low mass amines in a spoiled cranberry juice sample using IC-MS
- <u>AB72405</u> Fast determination of inorganic cations and low mass amines in freshly prepared and moldy green tea samples using IC-MS
- <u>AB72406</u> Fast determination of low mass, inorganic cations in a ground water sample using IC-MS
- <u>AB72454</u> Detection of oxyhalides using a compact IC system coupled with MS



IC-MS Application Notes

- <u>AU72507</u> Determination of perchlorate in environmental waters using a compact ion chromatography system coupled with a single quadrupole mass spectrometer
- <u>PN72144</u> The analysis of polar ionic pesticides by ion-exchange chromatography tandem mass spectrometry
- <u>PN85795</u> Determination of Ultratrace Level Perchlorate in Liquid and Powdered Baby Formula

IC-MS: Improved Low-Mass Sensitivity in Drinking Water

Required LODs are not achievable by Conductivity Detection alone

ThermoFisher SCIENTIFIC

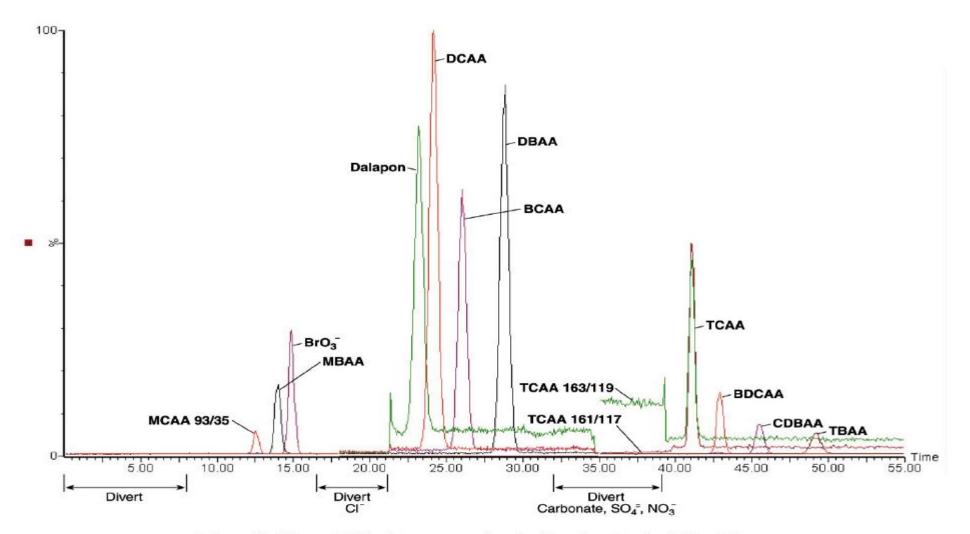
Fast Analysis of Haloacetic Acids, Bromate and Dalapon Using Ion Chromatography Coupled with Mass Spectrometry

- Total Trihalomethanes (TTHMs) in 1970s
- 1998 U.S. EPA Stage 1 Disinfectants/Disinfection Byproducts (D/DBP) Rule:
 - Seven new regulations, including HAA5 and bromate
 - Monitoring of HAA5 at all plants that disinfect with chlorine
 - Report total MCAA, MBAA, DCAA, DBAA, and TCAA
 - Maximum Contamination Level (MCL) = 0.060 mg/L annual average
 - MCL Goal (MCLG): DCAA should not be present; TCAA < 0.030 mg/L
- 2006 U.S. EPA Stage 2 D/DBP Rule: Reduced MCLG
 - Total HAA5 MCL < 0.060 mg/L
 - MCAA < 0.07 mg/L; TCAA < 0.02 mg/L
 - DCAA should not be present

Haloacetic Acids (HAA5 and HAA9)

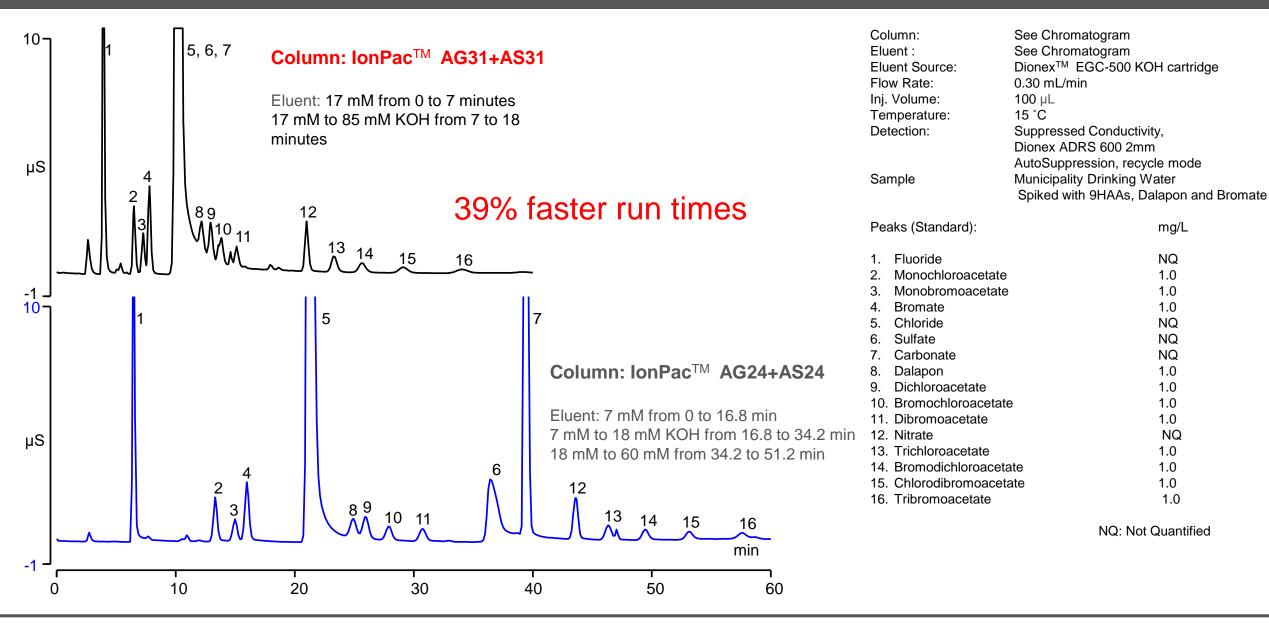
Acid	Abbreviation	Chemical Formula	pKa	Boiling Point °C
Monochloroacetic acid	MCAA*	CICH ₂ CO ₂ H	2.86	187.8
Dichloroacetic acid	DCAA *	Cl ₂ CHCO ₂ H	1.25 ^a , 1.29 ^b , 1.30 ^c	194
Trichloroacetic acid	TCAA *	Cl ₃ CCO ₂ H	0.63 ^a , 0.65 ^b , 0.70 ^c	197.5
Monobromoacetic acid	MBAA *	BrCH ₂ CO ₂ H	2.87ª, 2.86 ^b , 2.7 ^c	208
Dibromoacetic acid	DBAA *	Br ₂ CHCO ₂ H	1.47	238
Tribromoacetic acid	TBAA	Br ₃ CCO ₂ H	0.66	245
Bromochloroacetic acid	BCAA	BrCICHCO ₂ H	1.40	103.5
Dibromochloro acetic Acid	DBCAA	Br ₂ CICCO ₂ H	0.03	217
Dichlorobromoacet-ic acid	DCBAA	Cl ₂ BrCCO ₂ H	NA	NA

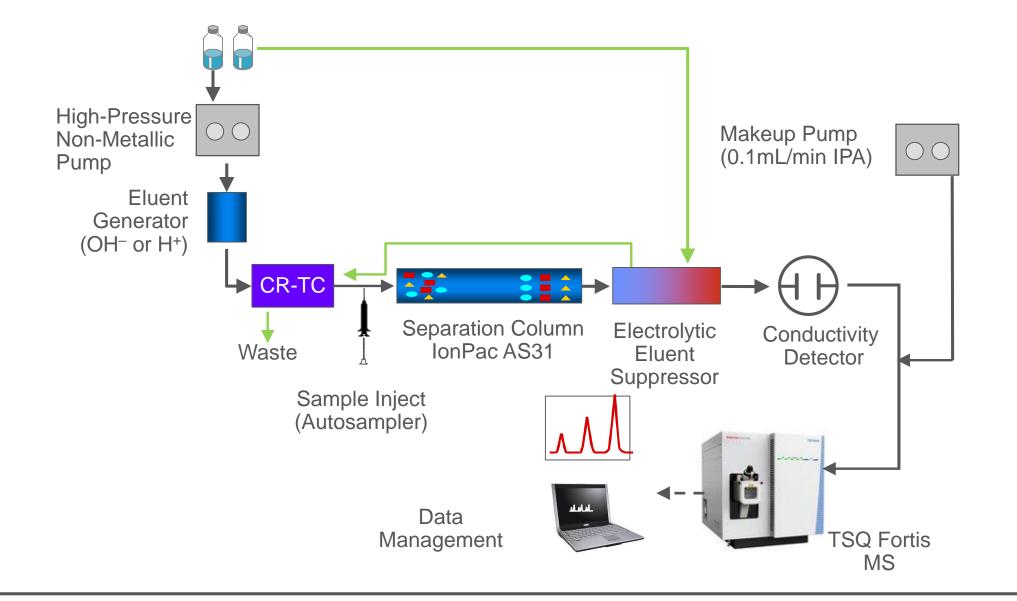
* MCAA, DCAA, TCAA, MBAA, DBAA are collectively referred to as HAA5



Summary of EPA Methods for HAAs (& Bromate, Dalapon)

Technique	EPA Method	Thermo Scientific™ Dionex™ IonPac™ Columns	MDL (ppb)
 1) Liquid/Liquid Extraction 2) Derivitization 3) GC-ECD 	552.2 552.3		Mono: 0.13–0.20
		GC-ECD	Di: 0.02–0.08
			Tri: 0.03-0.10
IC-MS, IC-MS/MS	557	Thermo Scientific [™] Dionex [™] IonPac [™] AG24 precolumn + Thermo Scientific [™] Dionex [™] IonPac [™]	Mono: 0.06–0.20
			Di: 0.02–0.11
		AS24 separation column (2 mm i.d.)	Tri: 0.04–0.09
2D-IC Suppressed Cond. (direct)	557.1	First dimension: Dionex IonPac AG24A precolumn + Dionex IonPac AS24A separation column (4 mm	Mono: 0.17–0.45
		i.d.)	Di: 0.06–0.13
		Second dimension: Thermo Scientific™ Dionex™ IonPac™ AG26 precolumn + Thermo Scientific™ Dionex™ IonPac™ AS26 separation column(0.4 mm i.d.)	Tri: 0.08–0.27

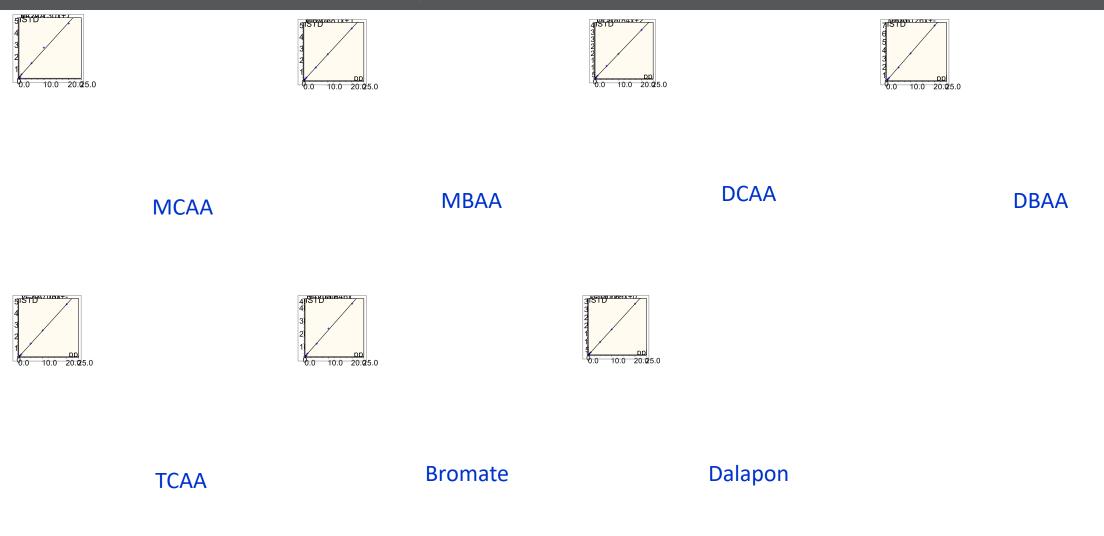

METHOD 557: Determination of 9 HAAs, Bromate and Dalapon in Drinking Water by IC with Electrospray Ionization Tandem Mass Spectrometry (IC-ESI-MS/MS)



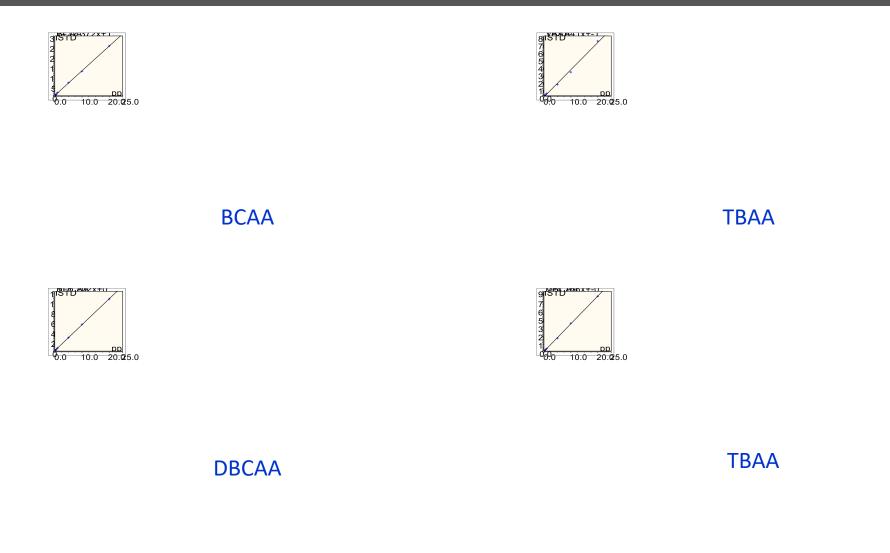
Separation of Haloacetic Acids, Dalapon, and Bromate in a Drinking Water Sample

Dionex IonPac AS31: HAA Analysis Low Temperature Requirement

- Operates at 15°C
 - Minimize potential for HAA degradation
 - Thermo Scientific ICS-5000⁺ or ICS-6000 HPIC system with **low temperature DC** required


IC-MS Results for 9 HAAs, Dalapon and Bromate

Concentrations of 9 HAAs, Dalapon and Bromate are 5 ppb in 100 mg/L NH₄Cl


Calibration Curves: Five Regulated HAAs, Bromate, and Dalapon

Linear curves obtained from 0.25-20 ppb with all R^2>0.99 for five regulated HAAs, Bromate and Dalapon

Calibration Curves : BCAA, BDCCA, DBCAA, and TBAA

Linear curves obtained from 0.25-20 ppb with all R^2>0.99 for the other 4 unregulated HAAs

IC-MS Method Detection Limits Obtained Using Dionex[™] IonPac[™] AS31Columns

MDL (µg/L, n=7)	Abbreviation	EPA Calculated DL	AS31 Calculated DL
Monochloroacetic acid	MCAA	0.2	0.19
Monobromoacetic acid	MBAA	0.064	0.021
Bromate	Bromate	0.02	0.014
Dalapon	Dalapon	0.038	0.079
Dichloroacetic acid	DCAA	0.055	0.019
Bromochloroacetic acid	BCAA	0.11	0.086
Dibromoacetic acid	DBAA	0.015	0.009
Trichloroacetic acid (163/119)	TCAA	0.09	0.073
Bromodichloroacetic acid	BDCAA	0.05	0.087
Chlorodibromoacetic acid	DBCAA	0.041	0.19
Tribromoacetic acid	TBAA	0.067	0.067

Comparable MDLs obtained for the target analytes

- Thermo Scientific[™] Dionex[™] IonPac[™] AS31 columns are packed with a novel anion exchange resin developed specifically for faster analysis of haloacetic acids (HAAs), bromate, and dalapon.
- AS31 columns have high ion exchange capacity and allow large loop injections for trace analysis (µg/L) without sample pre-treatment.
- AS31 columns operates at 15 °C and about 3200 psi, so a Thermo Scientific Dionex ICS-5000+ or ICS-6000 HPIC system is required.
- AS31 columns can meet or exceed the performance requirements of EPA Method 557.
- AS31 columns deliver 39% faster run times relative to IonPac AS24 columns, reducing the EPA Method 557 run time from 57 minutes to 35 minutes

ThermoFisher SCIENTIFIC

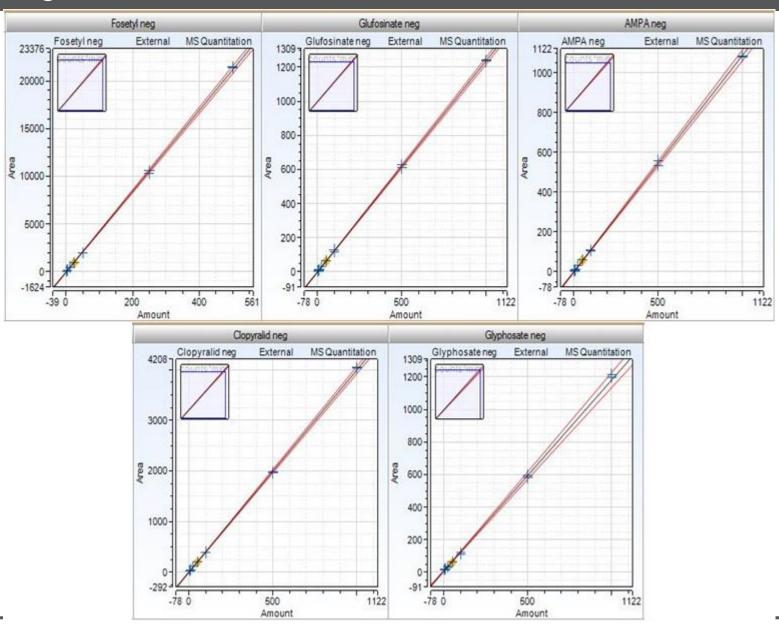
Polar Pesticides Analysis Using Ion Chromatography Coupled with Mass Spectrometry

IC-MS/MS Configuration for Polar Pesticides Analysis

- IC-System: Dionex Integrion RFIC
 - Eluent Source: Dionex EGC 500 KOH
 - Eluent: Potassium Hydroxide
 - Suppressor: AERS 500e 2mm External water mode regeneration
- External Pump 1 (for suppressor regeneration): Dionex AXP-MS Auxiliary pump
- External Pump 2 (for make-up flow): Dionex AXP-MS Auxiliary pump
- Autosampler: AS-AP Dionex Autosampler (PN: 074926)
- Mass Spectrometer: TSQ Quantiva

IC-MS Conditions

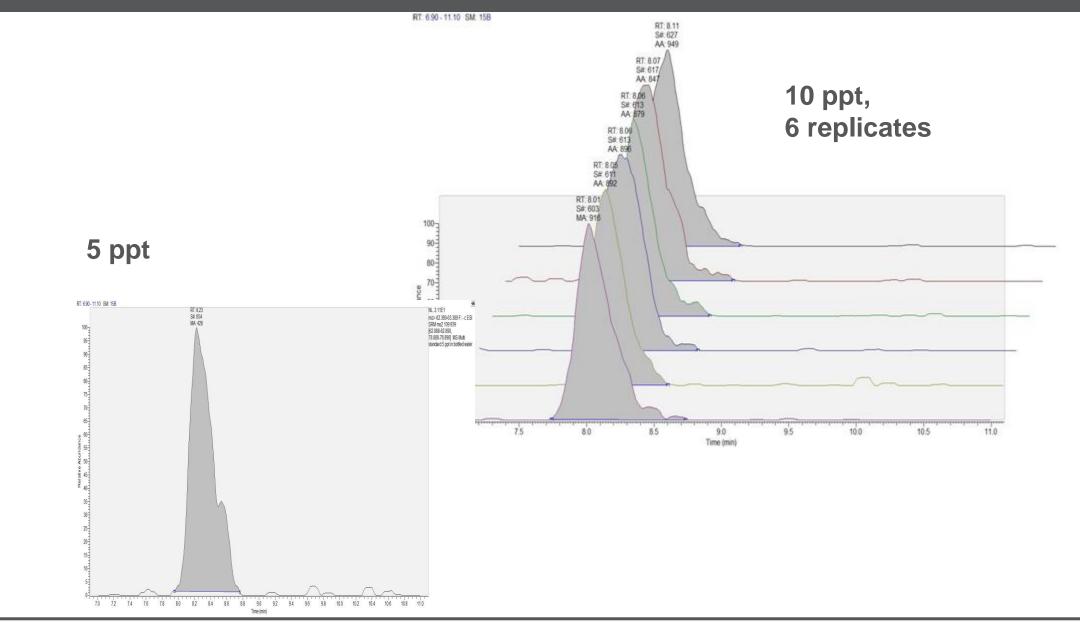
Column:	AS24 (2 x 250 mm)	Ion Source Type	H-ESI
Guard Column:	AG24 (2 x 50 mm)	Spray Voltage (Neg)	2800 V
Eluent:	КОН	Sheath Gas (Arb)	30
Column Temperature:	30 °C	Aux Gas (Arb)	12
Flow rate:	0.3 ml/min	Sweep Gas (Arb)	1
Make-up flow:	0.1 ml/min	Ion Transfer Tube	340°C
Make-up solvent:	IPA, 0.1 mL/min	Vaporizer Temperature	360 °C
Duration:	22 min	Cycle time (s)	0.5
Injection volume:	100 µL	Q1/Q3 Resolution (FWHM)	0.7
Injection Mode:	PushFull	CID gas (mTorr)	1.5
Loop Overfill:	2.000	Source Fragmentation (V)	0
		Use calibrated RF Lens:	


ThermoFisher SCIENTIFIC

IC method

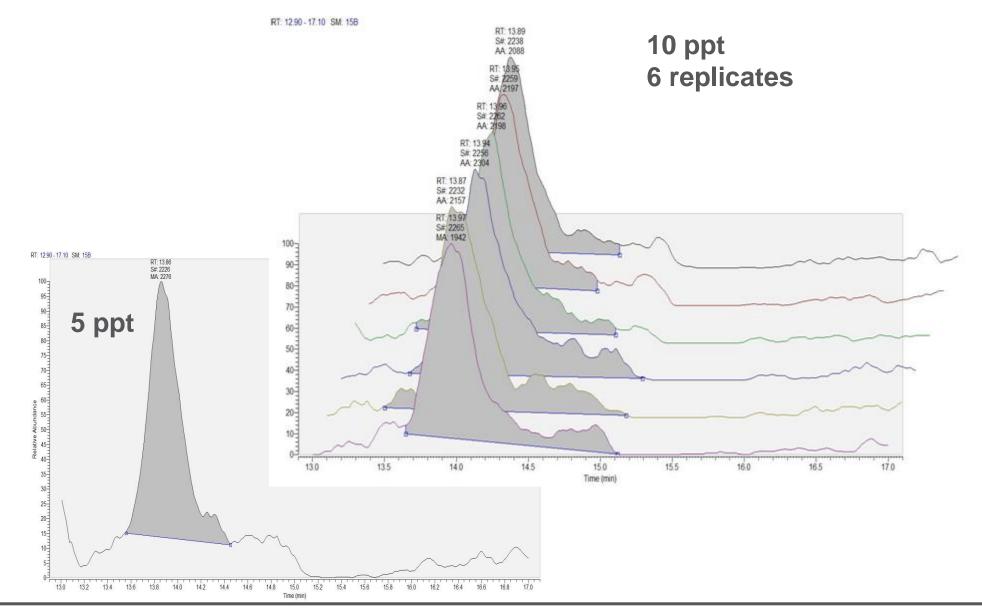
Time (min)	Potassium hydroxide (KOH) (mM)	Suppressor current (mA)
0	22	25
7	25	25
7.1	40	25
9.5	40	25
9.6	80	25
10.6	80	75
14.5	80	75
14.6	100	75
17	100	75
17.1	22	75
18	22	25
20	22	25

Calibration Drinking Water



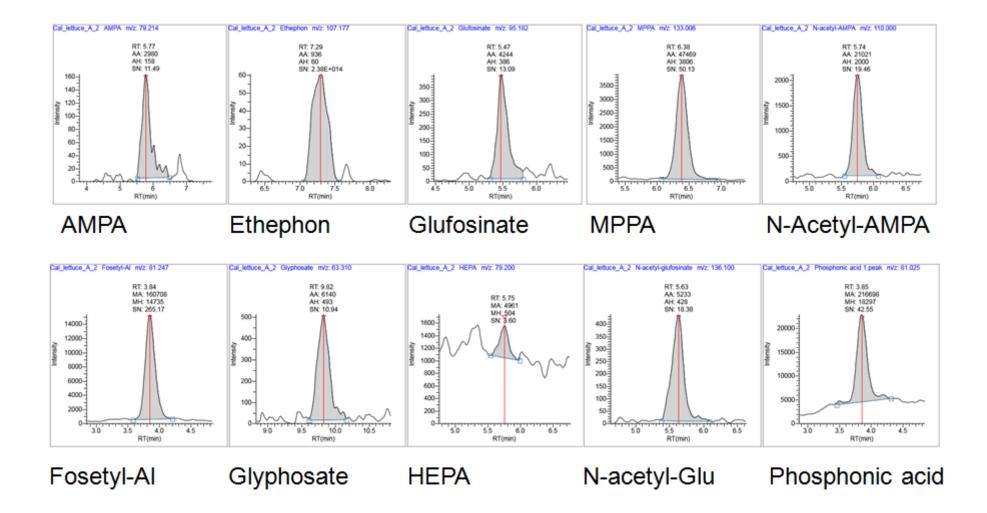
Bottled Evian Water performance

Name	LOD [ppt]	LOQ [ppt]	RSD % (10 ppt) level	
Fosetyl-Al	1	2.5	5	
Clopyralid	10	50	9	
AMPA	2	5	9	
Glyphosate	5	10	15	
Glufosinate	2	5	4	

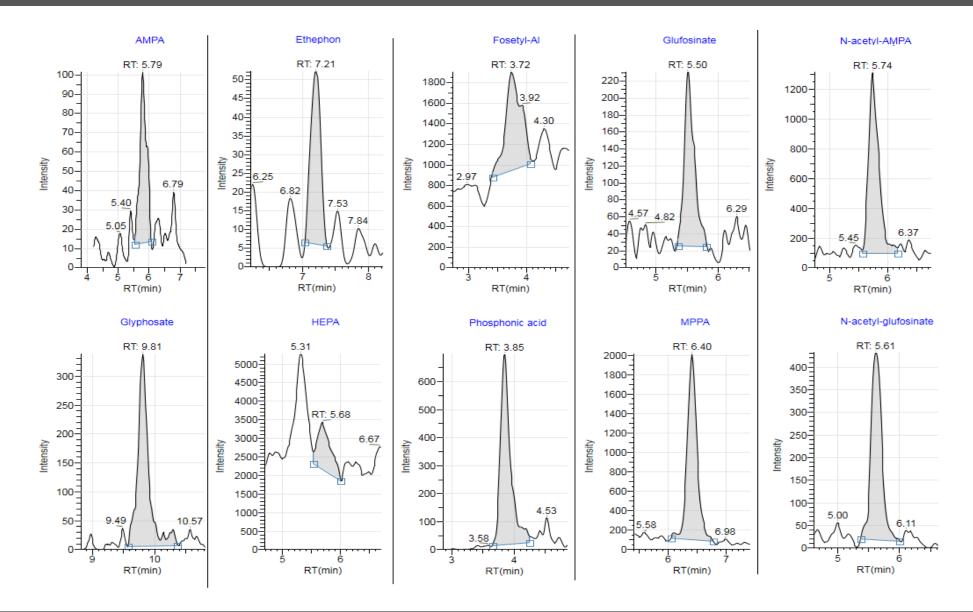


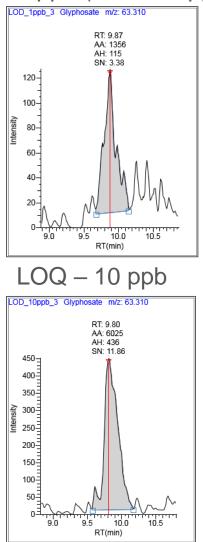
Bottled water - AMPA

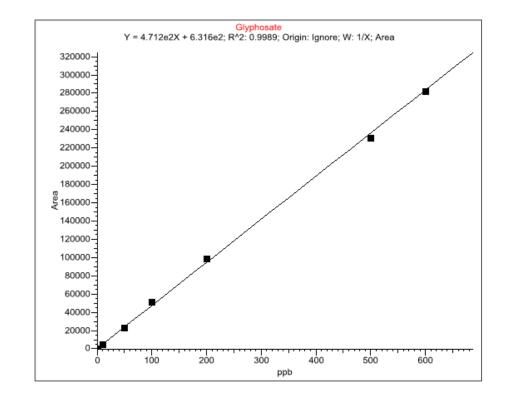
Bottled water - Glyphosate



Food Analysis – Polar Pesticides by IC-MS/MS LOD and LOQ

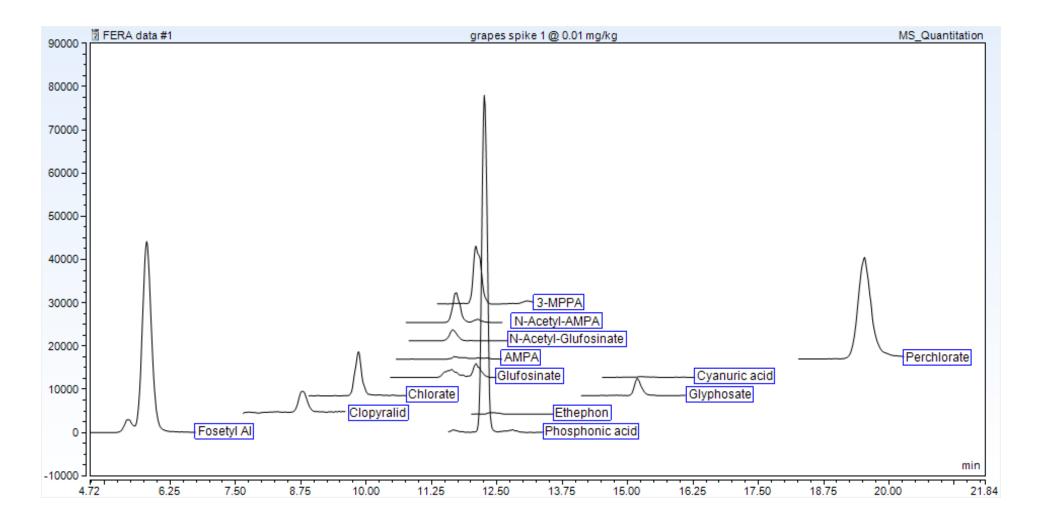

Analyte	LOD (µg/kg)	LOQ (µg/kg)	LOD (pg on column)	LOQ (pg on column)
AMPA	10	20	100	200
Ethephon	10	20	100	200
Fosetyl-Al	10	20	100	200
Glufosinate	1	10	10	100
Glyphosate	5	10	50	100
HEPA	10	20	100	200
Maleic hydrazide	100	200	1000	2000
MPPA	1	10	10	100
N-acetyl-AMPA	1	10	10	100
N-acetyl-glufosinate	3	10	30	100
Phosphonic acid	1	10	10	100


10 ppb in oranges

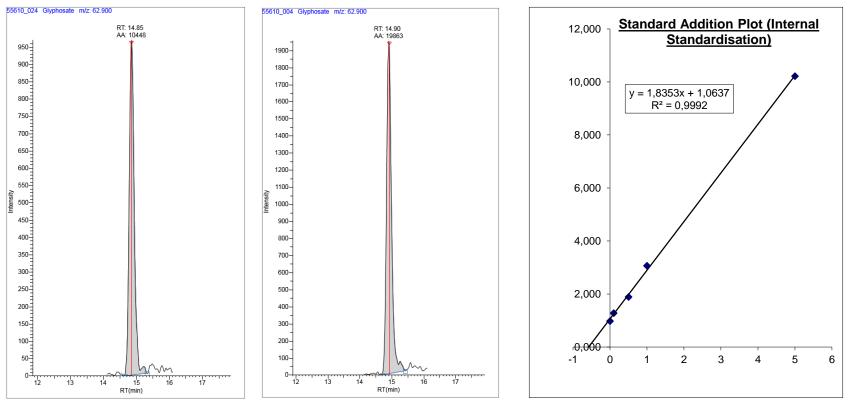


Quan Details Glyphosate in lettuce

1 ppb (LOD = 5 ppb)



Calibration range in matrix: 10 – 600 ppb


• 10 µg/kg spike in grape (Fosetyl & Phosphonic acid @ 100 µg/kg)

Glyphosate in Beer – No Extraction Required

Glyphosate incurred Glyphosate spike @ 0.5 μg/L
 Calibration plot 0.1 - 5 μg/L spikes residue @ 0.58 μg/L

• 1/10 dilution with water and internal standard added

Courtesy of Fera Science Ltd UK

Comparing Dionex Ion Chromatography Systems

Feature	Value	Aquion	Integrion	ICS-4000	ICS-6000
High Performance Pump	Consistent, accurate results	\checkmark	\checkmark	\checkmark	\checkmark
Electrolytically Regenerated Suppressor	Saves time and money	\checkmark	\checkmark	\checkmark	\checkmark
Sample Preparation	Labor, operational, and capital savings	\checkmark	\checkmark	\checkmark	\checkmark
Eluent Generation – just add water	Increased throughput, operational savings		\checkmark	\checkmark	\checkmark
Gradient Separations	Saves time and labor		\checkmark	\checkmark	\checkmark
Integrated Electrochemical Cell	Capital savings, expand lab capabilities		\checkmark	\checkmark	\checkmark
High Pressure IC up to 5000 psi	Increased throughput, Expanded capabilities		\checkmark	\checkmark	\checkmark
Consumables Device Monitor	Maximize instrument uptime		\checkmark		\checkmark
Unity Remote Services	Maximize instrument uptime		\checkmark		\checkmark
Tablet control of system	Increased convenience		\checkmark		\checkmark
IC PEEK Viper Fittings	Consistent, accurate results		\checkmark	\checkmark	\checkmark
Capillary IC Capability	Increased throughput, operational savings			\checkmark	\checkmark
Modularity	Capital savings				\checkmark
Configurable as Independent Dual System	Capital savings				
Proportioned Mechanical Gradients	Expanded capabilities				\checkmark
2-D Chromatography	Expanded capabilities				· · · · · · · · · · · · · · · · · · ·

IC-MS System Operating Conditions Using a Dionex[™] IonPac[™] AS31Column

Timed Events

Thermo Scientific[™] Dionex[™] ICS-6000 System and Thermo Scientific[™] TSQ Fortis[™] Mass Spectrometer

Column:	IonPac AS31 2 x 250 mm + 2 x 50 mm Guard	Time	<u>[KOH], mM</u>	Divert Valve
Eluent:	KOH Gradient (see Timed Events)	-5.0 Begin	17.0	Eluent to Waste
Suppressor:	ADRS® 600, 2-mm, external water, 0.3 mL/min	0.0	17.0	
Suppressor Current:	64 mA	5.0	17.0	Eluent to MS
Analytical Flow Rate:	0.3 mL/min	3.0	17.0	Eldent to Mo
Column Temp:	15 °C	7.0	17.0	
Injection Volume:	100 µL	8.5		Eluent to Waste
Detector:	CD, TSQ Fortis	11.1		Eluent to MS
TSQ Fortis Tune Param	neters:	15.6		Eluent to Waste
Ion Source Type:	H-ESI (Negative Polarity)	18.0	85.0	
Spray Voltage:	3200 V	21.7		Eluent to MS
Cycle Time:	2.3 secs		05.0	
Resolution:	Q1 (FWHM) 0.7	35.0	85.0	Eluent to Waste
	Q3 (FWHM) 0.7	35.1	17.0	
CID Gas:	2 mTorr	36.0 End		
Sheath Gas:	50 Arb			
Aux Gas :	10 Arb			
Sweep Gas:	3 Arb			

ThermoFisher SCIENTIFIC

Ion Transfer Tube Temp:

Vaporizer Temp:

225°C 275°C

Recovery of 2µg/L HAAs, Delapon and Bromate Spiked in Reagent Water and LSSM

Analyte	Reagent Water Spiked with Analytes at 2µg/L		LSSM Spiked with Analytes at 2µg/L	
	% Recovery	% RSD (n=7)	% Recovery	% RSD (n=7)
MCAA	99.6	3.4	104.5	5.1
MBAA	101.6	3.8	103.5	4.2
Bromate	103.9	2.8	101.1	5.3
Dalapon	104.2	1.8	99.2	3.2
DCAA	109.7	1.8	110.1	2.0
BCAA	103.5	2.4	106.8	4.1
DBAA	101.7	0.6	101.0	2.8
TCAA	102.2	6.7	105.8	8.6
BDCAA	98.2	3.1	97.0	4.4
DBCAA	92.0	6.7	93.3	7.3
TBAA	92.0	3.7	98.4	7.4
AVG	100.8	3.4	101.9	4.9

All recoveries within 90-110 % with all %RSDs ≤10 to meet the EPA requirements

Recovery of 2µg/L HAAs, Delapon and Bromate in a City Tap Water Sample

Analytes	City Tap	o Water	City S wate	er spiked 2µg/L
	Conc.	%RSD	REC (%)	RSD (%)
MCAA	2.706	2.0	107.6	5.1
MBAA	0.078	4.9	104.2	4.0
Bromate	0.084	5.4	99.0	4.5
Dalapon	0.288	5.0	102.8	4.0
DCAA	12.36	0.8	107.0	2.0
BCAA	2.431	3.2	93.6	3.2
DBAA	0.339	0.4	94.8	2.2
TCAA_163	4.484	0.5	98.1	5.4
BDCAA	1.107	10	104.2	7.0
DBCAA			108.1	5.7
TBAA			102.7	5.7
AVG			102.0	4.4

• All recoveries within 90-110 % with all %RSDs ≤10 to meet the EPA requirements

Recommended IC-MS/MS configuration for polar pesticides in food

- IC-System: Dionex Integrion HPIC (PN: 22153-60208)
 - Eluent Source: Dionex EGC 500 KOH (PN: 075778)
 - Eluent: Potassium Hydroxide
 - Suppressor: AERS 500 2mm (PN: 082541)
 - External water mode regeneration
- External Pump 1 (for suppressor regeneration): Dionex AXP-MS Auxiliary pump (PN: 60684)
- External Pump 2 (for make-up flow): Dionex AXP-MS Auxiliary pump (PN: 60684)
- Autosampler: AS AP Dionex Autosampler (PN: 074926)

IC-MS/MS Conditions

- Column: AS24 (2 x 250 mm)
- Guard Column: AG24 (2 x 50 mm)
- Eluent: KOH
- Injection volume: 10 µL
- Column Temperature: 21 °C
- Flow rate: 0.3 ml/min
- Make-up flow: 0.1 ml/min
- Make-up solvent: CH₃OH

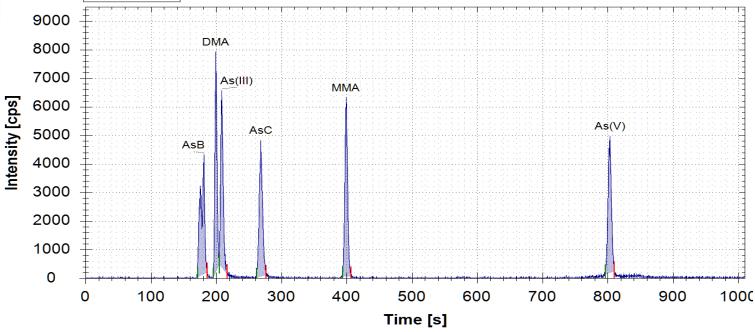
Time (min)	Concentration of KOH in eluent (mM)
0	25
0.2	25
11	80
11.1	100
12.5	100
12.6	25
17.0	25

 Ion Source Type 	H-ESI
 Spray Voltage (Neg) 	2500V
 Sheath Gas (Arb) 	20
 Aux Gas (Arb) 	5
 Sweep Gas (Arb) 	0
 Ion Transfer Tube 	329°C
Vaporizer Temperature	400 °C
Dwell Time (ms)	10
 Q1/Q3 Resolution (FWHM) 	0.7
 CID gas (mTorr) 	1.5
 Source Fragmentation (V) 	0
 Use calibrated RF Lens: 	YES

Recovery and Repeatability

- 3 levels: 50, 200 and 500 $\mu\text{g/kg}$
- 6 repetitions at each level

Analyte						
	Level 1	(in ppb)	Level 2 (in ppb)		Level 3 (in ppb)	
	REC %	RSD %	REC %	RSD %	REC %	RSD %
AMPA	84	14	85	8	80	3
Ethephon	120	10	88	5	92	12
Fosetyl-Al	98	16	97	12	82	3
Glufosinate	101	4	93	8	86	3
Glyphosate	88	12	83	10	81	3
HEPA	118	7	93	9	81	4
Maleic hydrazide	51	245	0	-	40	117
MPPA	116	4	98	8	81	3
N-acetyl-AMPA	95	8	89	9	79	2
N-acetyl-glufosinate	93	8	91	8	84	2
Phosphonic acid	115	11	99	11	81	3


IC coupled to ICP-MS

Narrow peak width enables high signal to noise, resulting in lower LODs

Improved column chemistry provides better resolution even for closely eluting peaks

75As (KED)

BENEFITS

- Completely metal-free flow path
 - Less contamination
 - Lowest chemical noise
 - Better S/N
 - Lower LOD
- Narrower bore columns (2 mm ID)
 - Narrower peak shapes
 - Better S/N

Metal-free flow path ideal for metal speciation applications

IC-MS Application Notes

		TSQ Fortis	Q Exactive
	ISQ EC	TSQ Quantis	Q Exactive
		TSQ Altis	Focus/Plus
Integrion	<u>AN151</u>	<u>AN243</u>	<u>AN491</u>
	<u>AN243</u>	<u>AN263</u>	<u>AN661</u>
	<u>AN269</u>	<u>AN269</u>	<u>PN72114</u>
	<u>AN276</u>	<u>AN479</u>	
	<u>AN409</u>	<u>AN491</u>	
	<u>AN72587</u>	<u>AN661</u>	
	<u>AN72609</u>	<u>AN65201</u>	
	<u>AB104</u>	<u>AN72482</u>	
	<u>AB72363</u>	<u>PN72114</u>	
	<u>AB72403</u>	<u>PN85795</u>	
	<u>AB72404</u>		
	<u>AB72405</u>		
	<u>AB72406</u>		
	<u>AB72454</u>		
	<u>AU72507</u>		

IC-MS Application Notes

		TSQ Fortis	Q Exactive
	ISQ EC	TSQ Quantis	Q Exactive
		TSQ Altis	Focus/Plus
ICS-6000	<u>AN151</u>	<u>AN243</u>	<u>AN491</u>
	<u>AN243</u>	<u>AN454</u>	<u>AN622</u>
	<u>AN269</u>	<u>AN263</u>	<u>AN661</u>
	<u>AN276</u>	<u>AN269</u>	<u>PN72114</u>
	<u>AN409</u>	<u>AN479</u>	
	<u>AN1000</u>	<u>AN491</u>	
	<u>AN72587</u>	<u>AN630</u>	
	<u>AB104</u>	<u>AN661</u>	
	<u>AB72363</u>	<u>AN65196</u>	
	<u>AB72403</u>	<u>AN65201</u>	
	<u>AB72404</u>	<u>AN72482</u>	
	<u>AB72405</u>	<u>PN72114</u>	
	<u>AB72406</u>	<u>PN85795</u>	
	<u>AB72454</u>		
	<u>AU72507</u>		

