

Thermo Fisher SCIENTIFIC

Environmental and Food Safety

Sofia, October 2018

Simonas Rudys Technical Sales Manager Emerging Markets EMEA Chromatography and Mass Spectrometry

Proprietary & Confidential

We Are The World Leader in Serving Science

Global Scale

- Approximately 70,000 employees globally
- More than \$20 billion in annual revenue
- Unparalleled commercial reach

Unmatched Depth

- Leading innovative technologies
- Deep applications expertise
- Premier laboratory productivity partner

ThermoFisher SCIENTIFIC

unity labservices

Our Mission: To enable our **CUStOMERS** to make the world healthier, cleaner and safer

Our Business Segments

SCIENTIFIC

A Laboratory Solutions Powerhouse

Software and Services

Comprehensive services

Multi-vendor support

Thermo Scientific™ Dionex™ Chromeleon™ CDS, LIMS

Consumables

IC, LC, GC columns Vials, septas, fittings Solvents and standards

Instruments GC, LC, IC
LC multiplexing
SQ, QQQ, Ion Trap,
Orbitrap, Hybrids

AA, ICP, ICP-MS, IRMS

Expanded depth and scale offer unequaled portfolio breadth

Thermo Scientific I C Portfolio Overview

620 bar

HPLC Systems		UHPLC Systems				
Routine Analysis		Low-Flow	Flexibility, More Performance and Method Development		Research & HT	
				Vanquish	Duo Workflows	
UltiMate 3000 Basic Automated •Highly economic & reliable	UltiMate 3000 SD •Workhorse for standard HPLC applications	UltiMate 3000 RSLCnano EASY-nLC 1200 •UHPLC systems for Nano/Cap/Micro range •Ideal front-end for proteomics applications	UltiMate 3000 RS/BioRS •Specialty workflow support •Binary and Quaternary UHPLC systems	 Vanquish Flex High pressure binary and low pressure quaternary solvent mixing options Two thermostatting modes Biocompatible Integration of multiple detection technologies 	 Vanquish Horizon High pressure binary solvent mixing Industry-leading precision and accuracy Two thermostatting modes Unmatched detection sensitivity Biocompatible Integration of multiple detection technologies 	
				Windowski and Windows Windowski and Windowski and		

800-1200 bar

Up to 1000 bar

1500 bar

Three Workflows. Two Flow Paths. One Integrated UHPLC Solution.

Target Markets of Vanquish Duo Workflows

SCIENTIFIC

Thermo Scientific Vanquish Duo System Benefits

Workflows of the Vanquish Duo Systems

Vanquish Duo

3 workflows requiring different instrument configurations

Improved ROI by extended Productivity for each workflow

Thermo Scientific[™] Vanquish[™] Flex Dual Pump

- 2 ternary pumps in one housing
- 1000 bar (15,000 psi) version
- Delivers 2 completely independent gradients

Thermo Scientific[™] Vanquish[™] Dual Split Samplers

- 2 injection units in one autosampler
- 1000 and 1500 bar (15,000 or 22,000 psi) version
- Independent flow paths

Thermo Scientific Vanquish Duo System

Thermo Scientific[™] Vanquish[™] Duo System for Dual LC

Thermo Scientific Vanquish Duo for Dual LC – Instrument Configuration

What Can Be Accomplished with Thermo Scientific Vanquish Duo System for Dual LC?

	Dual LC			
Flow Path 1	Analytical Gradient	Recondi-	Analytical Gradient	Recondi-
	Application 1	tioning	Application 1	tioning
Flow Path 2	Analytical Gradient	Recondi-	Analytical Gradient	Recondi-
	Application 1	tioning	Application 1	tioning

Run two identical columns

Be finished in half the time

out of every sample

Finished in half the time

Efficient characterization

Thermo Scientific Vanquish Duo for Tandem LC or LC-MS

ump 1	Analytical Gradient Application 1	Recondi- tioning	Analytical Gradie Application 1	nt Recondi- tioning	Downtime (column switch)	Analytical Gradient Application 2	Recondi- tioning	Analytical Gradient Application 2	Recondi tioning
	Tandem LC/LC-N	IS							
ump 1	Analytical Gradient Application 1	Analytical (Applicat	Gradient Do tion 1 (colur	wntime nn switch)	Analytical Gradient Application 2	Analytical Gradient Application 2		Time savings	\$ _
ump 2	Recondi- tioning	Recondi- tioning			Recondi- tioning	Recondi- tioning	Compa	ared to single char	nel LC

Analytical Challenge – Thermo Scientific Vanquish Duo for Tandem LC or LC-MS

Asked to maximze the instrument outcome

Key Benefits – Thermo Scientific Vanquish Duo for Tandem LC or LC-MS

Advanced column wash without sacrificing throughput

Thermo Scientific Vanquish Duo for Inverse Gradient

Unique Detectors: Charged Aerosol Detection

- Detection of substances
 without a chromophore
- Consistent analyte response independent of chemical structure
- Dynamic range up to four orders of magnitude and highest sensitivity
- Relative quantification using virtually any standard

Comparison of Charged Aerosol Detection to UV and MS

Saving costs for additional detectors or assays

Inverse Gradient Compensation for Uniform Response

SCIENTIFIC

Workflow Positioning

-> CUSTOMER <	Vanquish Duo for Dual LC	Vanquish Duo for Tandem LC or LC-MS	Vanquish Duo for Inverse Gradient
Improved Return on Investment	Double throughput or increase sample knowledge	Increased detector utilization	Reliable quantitation
Saves bench space	\checkmark	\checkmark	\checkmark
Easy to use	\checkmark	\checkmark	\checkmark
Doubled sample throughput	\checkmark	×	×
Run complementary assays	\checkmark	×	×
Increased throughput for LC-MS	×	\checkmark	×
Reliably quantify unknown	×	×	\checkmark

New Sample Detection Portfolio

Integrated detector options	Advantages
Thermo Scientific™ Vanquish™ Horizon Diode Array Detector	Outstanding signal to noise performance
NEW Thermo Scientific [™] Vanquish [™] Flex Diode Array Detector	Leading linearity, robustness and smooth MS integration
Thermo Scientific™ Vanquish™ Flex Variable Wavelength Detector	Supports a wide operating range
Thermo Scientific™ Vanquish™ Flex Fluorescence Detector	High selectivity and sensitivity
Thermo Scientific [™] Vanquish [™] Horizon/Flex Charged Aerosol Detector	Offers sensitive, universal detection with a nearly uniform response
Thermo Scientific™ ISQ™ EC/EM Mass Spectrometer	Single quadrupole MS for robust and easy mass detection

Three Workflows. Two Flow Paths. One Integrated UHPLC Solution.

Ultra High *Productivity*

Liquid Chromatography

Thermo Scientific Portfolio of Mass Spectrometry

Non-targeted analysis

2018 LSMS Hardware Portfolio

SCIENTIFIC

Confident quantitation for any compound, any matrix, any user

Environmental and Food Safety Clinical Research Pharma QA/QC

TSQ Fortis

- Mass Range m/z 5 3000
- Max Resolution 0.4 FWHM
- Max 30,000 transitions per run
- Polarity Switching < 20 msec
- Dynamic interscan time
- 600 SRM/sec
- TNG software
- Chromeleon support
- 50,000:1 S/N

Food Safety Pharma Clinical Research Forensic Toxicology

TSQ Quantis

- Mass Range m/z 5 3000
- Max Resolution 0.4 FWHM
- Max 30,000 transitions per run
- Polarity Switching < 20 msec
- Dynamic interscan time
- 600 SRM/sec
- TNG software
- Chromeleon support
- 150,000:1 S/N

Pharma/Biopharma Environmental and Food Safety Omics

TSQ Altis

- Mass Range m/z 5 2000
- Max Resolution 0.2 FWHM
- Max 30,000 transitions per run
- Polarity Switching < 20 msec
- Dynamic interscan time
- 600 SRM/sec
- TNG software
- · Chromeleon support
- 500,000:1 S/N

PERFORMANCE

TSQ Fortis: Affordable Productivity, For Everyone

Matrix Separator Ion Guide (MSIG) – Unique to TSQ Fortis!

Benefits: Increased Robustness while efficiently transmitting the ion beam and ensuring the required sensitivity

- A mass dependent potential is applied to focus the ions from the ion guide region toward the opening of the matrix separator.
- The off-axis design of the matrix separator enables the separation of neutrals from the ion beam, leading to increased robustness and therefore increased uptime.

Segmented Quadrupoles

Benefits: Increased Sensitivity, Flat tuning for consistent and robust performance

- The use of RF only pre-filters (segments) between the entrance lens and the quadrupole minimizes the effects of fringe fields, leading to improved transmission (and therefore sensitivity) at unit and higher resolution.
- With the RF only pre-filter, the tuning of several lenses is flat across mass range allowing the voltage to be set and not tuned. This helps reducing the complexity of the tune and making the systems more consistent.

New segmented quadrupoles with hyperbolic surfaces

Round Rods vs Hyperbolic rods

Competition

Thermo Scientific

Effect of Peak Width On Transmission

Hyperquads, Precursor Isolation and H-SRM

- Enhanced isolation and stability of ion(s)
 - H-SRM Improved isolation of precursor ion(s)
 - More Selectivity isolate only ion(s) of interest
 - Benefit Improved signal to noise
 - **Benefit** More Confidence less false positives
 - Benefit Higher Quality data

What Makes the new Triple Quads Robust?

What Makes the new Triple Quads Consistent?

Thermo Fisher

TSQ Fortis: Demonstration of Robustness – Clinical Research

+2000 injections over 6 days

Immunosuppressants

Red lines represent ± 20% of calculated amounts (ng/mL)

(CV%≤ 6%)

Yellow line represent the period in which the ion transfer tube was cleaned (user basic maintenance ~5 min operation) to demonstrate consistent performance before and after user maintenance.

Technical Note 65206

TSQ Quantis: Demonstration of Robustness – Food Safety

Atrazine QC monitored in leek for more than 400 injections with 4.5% RSD. Red lines represent \pm 20% response at 10 µg/Kg. Yellow lines show the time the system was placed in standby mode for 12h to demonstrate consistent performance after standby period

Application Note 64971

Pesticides Explorer – Workflow Solution

VetDrug Explorer – Workflow Solution

Multi-class Veterinary Drug Screening and Quantitation with a Comprehensive Workflow

Balancing the Complexity of Multi-Class Veterinary Drug Method Development

Several single-class methods

Stability of multi-component mixtures

Generic sample prep with good recoveries + RSDs

One multi-class method

Wide range of chemical classes+ MRLs

Inert LC system and column for wide pKa range and good peak shape

Technical Highlights of a Comprehensive Workflow

Feature	Detail	Comment
# of Compounds	170+ Analytes with acquisition and master processing method	Compound data base with optimized SRMs for easy set-up
Matrices	Muscle meat (cattle), milk, and salmon (fillet)	Demonstrates broad applicability of the multi-class method approach
QC and Analytical Standards	QC Check-20 cmpds Standards- 170 compounds	Ability to analyze 'System Performance Check'
Sample Preparation	Generic QuEChERs extraction w/simple clean-up	Detailed procedure required for applicable matrices
Column	Thermo Scientific™ Accucore™ VDX 100mm x 2.1 x 2.6 um	Ensure performance across wide polarity range
UHPLC-MS system	Thermo Scientific™ TSQ Altis™ Triple Quadrupole MS Thermo Scientific™ Vanquish™ Flex Binary pump	Includes detailed User guide for proper installation and system check-out
Software	Thermo Scientific™ TraceFinder™ Software 4.1 SP5	Unify all aspects of data handling from sample acquisition to report

Chemical Classes within the Method

Sample Preparation and LC Conditions

QuEChERS based approach

- EDTA/NH₄ oxalate solution and acetonitrile
- Sample homogenised until fully dispersed
- Sodium sulphate added before centrifugation
- Dispersive SPE (CEC-C₁₈) clean-up
- Add 1 mL H2O to 3mL extract, filter, inject

• LC conditions

- Thermo Scientific[™] Accucore[™] VDX Column
 2.1 x 100 x 2.6 um
- MP A: 0.05% formic acid
- \circ MP B: 0.05% formic acid, 5% H2O in 1:1 MeOH:MeCN
- 2 uL injection

Acquire Data on TSQ Altis

- Use pos/neg switching
- Comprehensive CDB with all optimized SRMs

The development and validation of a multiclass liquid chromatography tandem mass spectrometry (LC–MS/MS) procedure for the determination of veterinary drug residues in animal tissue using a QuEChERS (QUick, Easy, CHeap, Effective, Rugged and Safe) approach

George Stubbings*, Timothy Bigwood Central Science Laboratory, Sand Hutton, York, YO41 1LZ, UK

Column-Accucore VDX- Robust and Selective for VetDrugs

Features

- Solid core particle- high resolution separations
- Column chemistry selectivity similar to C18 columns
- Optimized for MS detection
- Low column bleed
- Optimized for low tailing
- Robust against matrix extracts
- Particle size: 2.6 µm

Improved Sensitivity and Specificity with H-SRM (0.2 Da FWHM)

Advantage of H-SRM for Fluazuron in salmon fillet extract: Noise is significantly reduced allowing Improved signal-to-noise (selectivity) against the matrix with high ion transmission

Calibration curve for Flunixin in salmon fillet matrix using H-SRM.

Compound	MDL (0.7 SRM)	MDL (0.2 HSRM)
Derquantel	0.42	0.04
Fenbendazole Sulfone	0.33	0.05
Flunixin	0.38	0.04
Hydroxyipronidazole	0.62	0.08
Robenidine	0.33	0.05
Teflubenzuron	4.47	0.47

Advantage of H-SRM for improved method detection limits (MDLs) for select compounds in a salmon fillet extract

TIC and SRMs

TIC of all SRMs @ 1xSTC in TraceFinder software

The distribution of 546 SRMs are easily visualized in the instrument software tune page

Quantitative Results- 0.2 to 5 x STC-Bovine

Sulfamethazine in bovine extract at 1× STC, with screening range from 10-250 ng/g.

Quantitative Results- 0.2 to 5 x STC - Salmon Fillet

Ethyl Violet in salmon extract @ 1×STC, with a screening range from 0.2–5 ng/g.

Compound Class - Average Calculated MDL (ng/g)

Average Method Detection Limit (MDL) by Class

Steps for Evaluating Method Performance

Retention Time Stability Across 4 LC/MS/MS Systems

- Validation included 4 different LC/MS/MS systems: 3 Thermo San Jose Labs and 1 at Iowa State Lab
- Representative compounds throughout the gradient RT range show excellent stability in matrix (Salmon Fillet shown), with excellent agreement between different systems (different columns, 3 LCs, and MS systems).

Compound	Exp RT	RT System 1	RT System 2	RT System 3	RT System 4	AVE	SDEV	%RSD
Cyromazine	0.83	0.82	0.82	0.85	0.82	0.83	0.0150	1.81
Dimetridazole	4.16	4.07	4.11	4.15	4.12	4.11	0.0330	0.80
Sulfamethoxazole	5.84	5.80	5.81	5.86	5.79	5.82	0.0311	0.53
Oxyphenbutazone	8.52	8.49	8.49	8.53	8.49	8.50	0.0200	0.24
Triclabendazole	10.21	10.19	10.22	10.24	10.21	10.22	0.0208	0.20
Closantel	11.88	11.91	11.91	11.92	11.93	11.92	0.0096	0.08
Monensin	12.21	12.23	12.25	12.27	12.26	12.25	0.0171	0.14

Example Data : Salmon Matrix- Precision at STC Levels Across 4 LC/MS/MS Systems

	Lowest Global								
Compound	MRL	STC	System 1	System 2	System 3	System 4	Average	SDEV	%RSD
Amoxicillin	50	25	24.4	24.8	25.0	27.3	25.4	1.31	5.2
Chlortetracycline	200	100	87.3	97.1	86.4	104.0	93.7	8.39	9.0
Danofloxacin	100	50	50.9	49.8	47.3	52.3	50.1	2.09	4.2
Dicloxacillin	300	150	144.5	148.2	147.7	152.2	148.2	3.15	2.1
Difloxacin	300	150	150.0	149.2	145.6	159.3	151.0	5.80	3.8
Doxycycline	10	10	9.2	9.1	9.2	10.1	9.4	0.47	5.0
Enrofloxacin	100	50	50.2	49.4	55.0	52.3	51.7	2.51	4.9
Flumequine	500	200	200.8	201.9	201.5	199.3	200.9	1.17	0.6
Oxolinic Acid	50	25	28.2	29.3	27.5	25.8	27.7	1.48	5.3
Oxytetracycline	200	100	102.2	96.4	94.6	101.1	98.6	3.65	3.7
Penicillin G	50	25	23.6	24.0	21.6	25.4	23.6	1.57	6.7
Sarafloxacin	10	3	3.0	3.0	2.9	3.1	3.0	0.06	2.0
Sulfadoxine	SUM 100	10	9.1	8.7	9.4	10.1	9.3	0.59	6.3
Tetracycline	200	100	98.8	98.3	91.7	100.4	97.3	3.81	3.9
Thiamphenicol	50	25	23.6	24.0	22.2	26.5	24.1	1.80	7.5
Tilmicosin	50	25	27.5	28.0	25.4	23.2	26.0	2.21	8.5
Trimethoprim	50	25	21.8	18.7	24.0	22.0	21.6	2.19	10.1
Tylosin	100	50	46.8	47.5	45.9	47.7	47.0	0.80	1.7

Current Routine Determination Practice

Current golden standard:

Targeted quantitative measurement by LC-MS/MS and GC-MS/MS Multi-residue methods, ~150–250 analytes/method

Emerging:

Non-targeted measurement by LC and GC + full scan MS for better coverage of pesticide scope and easier measurement IC for easier separation of polar substances

Sample preparation/analyte detection strategy

Former Pesticide Multi-Residue Method Setup

Extraction

Acetonitrile, Ethyl acetate, Methanol...

• Clean-up GPC, SPE, LLE, LC Mostly replaced by **QuEChERS** today

Determination

GC, LC, GC-MS, LC-MS, GC-MS/MS, LC-MS/MS...

Thermo Scientific™ QuEChERS™ method

- Dry food (cereals/dried food, < 25 % water content):
 - addition of water to enable adequate partitioning and reducing interaction of pesticides with matrix
- Food containing fat/wax (avocado/oil):
 - after extraction step add a freezing out step and transfer supernatant to clean-up tube
 - more clean-up might be needed of raw extract (PSA+C18)
- Food containing complex matrix (tea/spices)
 - additional clean-up with GCB might be necessary (potential loss of planar structure pesticides like thiabendazole)
- Acidic food (citrus):
 - adjust pH (5-5.5) to increase recovery (e.g. citrate buffering salts in QuEChERS extraction tube) and reduce coextraction of matrix interefrences (Note: acid labile compounds require higher pH 8)

Improving QuEChERS Clean-up Tips & Tricks:

• QuEChERS clean-up tube additives:

Product Selection

Matrix Type	Examples	Sorbent Requirements
General Matrices	Apples Cucumber Melon	Magnesium Sulfate, PSA
Fatty Matrices	Milk Cereals Fish	Magnesium Sulfate, PSA, C18
Pigmented Matrices	Lettuce Carrot Wine	Magnesium Sulfate, PSA, C18, GCB
High Pigmented Matrices	Spinach Red Peppers	Magnesium Sulfate, PSA, C18, GCB

Click here for more information

What is the future?

	Targeted Screening	Untargeted Screening	Unknown Screening
SEARCH FOR:	what you know	what you suspect	all the rest
HOW YOU SEARCH:	Compound search after targeted acquisition; uses specific compound list	Compound search follows acqusition based on most intense signals NOT on a list of compounds	Search of compounds with a totally untargeted acquisition
ADVISORY:	Detection parameters need to be numerous & selective to avoid false positives	Identification based on compound databases and/or spectral libraries	Putative identification typically followed by structural elucidation

Exactive Series Product Portfolio

.

.

.

Orbitrap analyzer

Polarity switching

Multiplexing SIM only

MS/MS

markets

Mass Range m/z 50 - 3000

Hyperbolic quadrupole: MS,

ddHCD, AIF, SIM, PRM, vDIA

Refined workflows for applied

Q Exactive Focus

-

Max. Mass Resolution >70.000

Scan speed up to 12Hz MS and

Mass Accuracy <1ppm

- Increased Performance
- Orbitrap analyzer
- Mass Range m/z 50 6000
- Mass Range EMR: 300 20,000
- Mass Accuracy: <1ppm
- Mass Resolution >140,000
- Scan Speed up to 12 Hz
- Octapole transfer for MS and AIF

Tester

+++++

- Orbitrap analyzer
- Mass Range m/z 50 6000
- Mass Accuracy <1ppm
- Max. Mass Resolution >140,000
- Scan speed up to 12Hz MS and MS/MS
- Polarity switching
- Hyperbolic quadrupole: MS, ddHCD, AIF, SIM, PRM, DIA
- Spectral Multiplexing

Q Exactive

Q Exactive Plus

- Orbitrap analyzer
- Mass Range m/z 50 6000
- Mass Accuracy <1ppm
- Max. Mass Resolution >140,000
 Scan speed up to 12Hz MS and
- MS/MS • Advanced Quadrupole Technology (AQT)
- Advanced Active Beam Guide (AABG)
- Polarity switching
- Segmented quadrupole: MS, ddHCD, AIF, SIM, PRM, DIA
- Spectral Multiplexing
- PRM dyn-RT correction
- Opt. Intact Protein Mode
 Opt. Enh Res.Mode (280k)
- Optional BioPharma Mode mass range up to 8000

Q Exactive HF

- Ultra High Field Orbitrap analyzer
- Mass Range m/z 50 6000
- Mass Accuracy <1ppm

٠

- Max. Mass Resolution >240,000
- Scan speed up to 18Hz MS and MS/MS
- Advanced Quadrupole Technology (AQT)
- Advanced Active Beam Guide (AABG)
- Polarity switching
- Segmented quadrupole: MS, ddHCD, AIF, SIM, PRM, DIA
- Spectral Multiplexing
- PRM dynamic RT correction
- Opt. Intact Protein Mode
 - Optional BioPharma Mode mass range up to 8000

Q Exactive HF-X

- Ultra High Field Orbitrap analyzer
- Mass Range m/z 50 6000
- Mass Accuracy <1ppm
- Max. Mass Resolution >240,000
- Scan speed up to 40Hz MS and MS/MS
- High capacity transfer tube
- Electrodynamic ion funnel
- Advanced Quadrupole Technology (AQT)
- Advanced Active Beam Guide (AABG)
- Polarity switching
- Segmented quadrupole: MS, ddHCD, AIF, SIM, PRM, DIA
- Spectral Multiplexing
- PRM dynamic RT correction
- Advanced ddHCD algorithm
- Optional BioPharma Mode mass range up to 8000 with Intact Protein settings

Exactive Plus

(EMR)

Schematic of the Q Exactive Focus

Benefits of Using Orbitrap Technology

All your screening and quantitation applications in One platform

RAFA 2013: Łukasz Rajski, María del Mar Gómez Ramos, Amadeo R. Fernández-Alba; EURL for Pesticide Residues in Fruits and Vegetables. Pesticide Residue Research Group. University of Almeria, Spain. e-mail: amadeo@ual.es

3 ways of Quantitation/Screening for Routine Work

Full MS or targeted SIM/ddMS2

- Post-acquisition extracted ion chromatograms of parent ions of interest •
- Relies on high resolution for selectivity
- Useful for less complex background ٠
- No method development/preparation needed

Full MS/ All Ion Fragmentation – vDIA*

- Post-acquisition extracted ion chromatograms of parent ions of interest
- Scheduled target (inclusion) list (Rt, m/z)
- Minimum method development (e.g., predefine parent ions, tr)
- Also for screening purposes

PRM (Parallel Reaction Monitoring)

- Post-acquisition extracted ion chromatograms of parent -> fragment transitions acquired
- Scheduled target list (Rt, m/z, collision energy)
- Most sensitive and selective even in highly complex matrices

Experiments	
General *	
Full MS	
SIM	
• PRM	Full MS
💴 Full MS - AIF	
C Full MS - vDIA	

General

SIM

PRM

Q Exactive Focus Scan Methods

Orbitrap MS: Unmatched Resolution

Benefits of high resolution for small molecule analysis

- Differentiate similar masses in complex matrix
- Isobaric species
- Fine isotopic pattern

High resolution and mass accuracy increase confidence of unknown identification

Analysis of Polar Pesticides by IC-MS/MS

IC ve I C argumente				
	lon Chror	natography	Liquid Chro	omatography
Matrix	Food	Water	Food	Water
Sample preparation	n Extraction (QuPPe)	None (filtration)	Extraction (QuPPe) (optional FMOC* derivatization)	FMOC* Derivatization (SPE cleanup) (automation possible)
Separation quality	Excellent	Excellent	Poor (Hypercarb)	Very good (Reversed Phase)
LOQs	1-10 ppb	5 -10 ppt	1 – 10 ppb	5 – 10 ppt
MS/MS	**TSQ Endura/Quantis	**TSQ Quantiva/Altis	**TSQ Quantiv/Altis (Endura not suitable)	**TSQ Quantiva/Altis
Matrix tolerance	Very good	Very good	Limited	Good
Time consumption	Low	Low	Low - medium	Medium – High (automation possible)

*FMOC derivatization applicable only for Gly, AMPA, Glu! **Thermo Scientific™ TSQ™ Endura/Quantis, Thermo Scientific™ TSQ™ Quantiva/Altis™

TSQ Fortis (& Ion Chromatography): Environmental Analysis

Haloacetic Acids by IC-MS/MS

Compound	MDL (µg/L)
MCAA	0.03
MBAA	0.03
DCAA	0.02
DBAA	0.02
BCAA	0.03
ТСАА	0.06
BDCAA	0.05
DBCAA	0.15
TBAA	0.15
Dalapon	0.03
Bromate	0.02

Application Note 65196

Perchlorate by IC-MS/MS

TSQ Altis: Confident Quantitation of challenging analytes in environmental matrices

IC-MS/MS solutions for environmental analysis Quantitation of **Glyphosate** at **5 ng/L**, **3% RSD**

Polar pesticides in fruits and vegetables by IC-MS/MS Instrumental Configuration

- IC-System: Dionex Integrion HPIC
 - Eluent Source: Dionex EGC 500 KOH
 - Suppressor: ASRS 300
- Autosampler: AS AP Dionex Autosampler
- Mass Spectrometer: TSQ Quantiva

.Column: AS24 (2 x 250 mm) .Guard Column: AG24 (2 x 50 mm) KOH •Eluent: 30 °C .Column Temperature:

.Flow rate:

Make-up flow:

.Make-up solvent:

Run time:

Injection volume:

Gradient KOH:

No	Time	Concentration [mM]	Curve
1	{Initial Tim	Instrument	Setup
2	{Initial Tim	22.00	5
3	0.000	Run	
4	0.000	22.00	5
5	4.100	22.00	5
6	7.000	25.00	5
7	7.100	40.00	5
8	9.500	60.00	5
9	12.000	80.00	5
10	14.500	80.00	5
11	15.000	100.00	5
12	17.000	100.00	5
13	17.100	22.00	5
14	19.900	22.00	5
15	20.000	22.00	5
16	22.000	22.00	5
17	New Row		
18	22.000	Stop R	un

0.3 ml/min

0.1 ml/min

10 µL

Compound	LOD (µg/kg)	LOQ (µg/kg)
Phosphonic acid	0.50	1.0
Fosetyl	0.03	0.1
AMPA	0.50	1.0
Glufosinate	0.50	1.0
N-acetyl-glufosinate	0.25	0.75
Ethephon-hydroxy	0.25	0.75
N-acetyl-AMPA	0.10	0.50
MPPA	0.10	0.50
Ethephon	0.25	0.75
Glyphosate	0.03	0.10

Compound	LOD (µg/kg)	LOQ (µg/kg)
Phosphonic acid	0.50	1.00
Fosetyl	0.03	0.10
AMPA	0.50	1.00
Glufosinate	0.25	0.75
N-acetyl-glufosinate	0.25	0.75
Ethephon-hydroxy	0.03	0.10
N-acetyl-AMPA	0.03	0.10
MPPA	0.03	0.10
Ethephon	0.25	0.75
Glyphosate	0.03	0.10

Fast Analysis of Polar Pesticides in Water by IC-MS/MS

IC:Dionex Integrion[™] MS:TSQ Quantiva[™]

Column: AS24 (2 x 250 mm)
Guard Column: AG24 (2 x 50 mm
Eluent: KOH
Injection volume: 100 μL
Column Temperature: 21 °C
Flow rate: 0.3 ml/min
Make-up flow: 0.1 ml/min
Make-up solvent: CH ₃ OH

Time (min)	Concentration of KOH in eluent	
-	(11114)	
0	25	
0.2	25	
11	80	
11.1	100	
12.5	.5 100	
12.6	25	
17.0	25	

Component	Matrix		LOQ [ppt]
	Drinking	2.5	5
Fosetyl	Bottled	1	2.5
	Surface	2.5	5
	Drinking	5	10
Glufosinate	Bottled	5	10
	Surface	5	10
	Drinking	5	10
AMPA	Bottled	5	10
	Surface	5	10
	Drinking	10	50
Clopyralid	Bottled	5	10
	Surface	5	10
	Drinking	10	50
Glyphosate	Bottled	10	50
	Surface	10	50

- Sample preparation
- Chromatography
- Mass Spectrometry
- Trace Elemental
- IRMS
- Consumables
- Services
- Informatics

