

ThermoFisher SCIENTIFIC Unstoppable GC-MS technology to boost efficiency in toxicology testing laboratories

Miloš Korman, PhD., MBA Technical Sales Manager GCMS Emerging Markets

The world leader in serving science

Pressures on routine laboratories

- Lower detection requirements and varying sample types
- More results in less time, without compromising quality
- Removing complexity, for maximum analyst productivity
- Meeting today's requirements, and being ready for tomorrow

Requirements

- Highly sensitive and robust GC-MS and GC-MSMS
- Highest uptime and stripping out cost in result production
- Ease of use, from method development to routine analysis
- Ability to scale their technology with their needs

ISQ 7000 GC-MS & TSQ 9000 GC-MS/MS system highlights

Ultimate Sensitivity with Advanced Electron Ionization source

Extended Uptime with inherent robustness and NeverVent™ technology

Routine Ease of Use from method development to daily operation

True Scalability to face evolving regulatory requirements

UNSTOPPABLE®

Scientife

ThermoFisher SCIENTIFIC

ISQ 7000 Configurations, & Upgrade

ISQ 7000 GCMS – Full Scalability from low to high-end performances

Field upgrade path across the ISQ 7000 configurations, but no upgrade from ISQ QD or LT

ISQ 7000 Technical Specifications

Specification	ISQ7K-STNOVPI	ISQ7K-NOVPI	ISQ7K-VPI	ISQ7K-VPICI	ISQ7K-AEI
In EI mode, 1 μL of 1 pg/μL OFN m/z 272 , scanning from 50 – 300 Da	750:1 (*)	2000:1 (*)	2000:1 (*)	2000:1 (*)	300:1 (100fg)
In PCI mode, 1 µL of 100 pg/µL BZB m/z 183, scanning from 80 – 230 Da	Not Included	Not Included	Not Included	300:1	Not Included
In NCI mode, 2 μ L of 100 fg/ μ L of OFN m/z 272, scanning from 50 – 300 Da	Not Included	Not Included	Not Included	2000:1	Not Included
IDL for m/z 272 in SIM mode in EI	<u>≤</u> 10 fg	<u><</u> 5 fg	<u><</u> 5 fg	<u><</u> 5 fg	<u><</u> 1 fg (*)
Ionization Modes	EI	EI	EI	EI and CI	EI
Carrier Gas Choice	He only	He or H ₂	He or H ₂	He or H ₂	He or H ₂
Instant Connect Helium Saver Injector	Compatible	Compatible	Compatible	Compatible	Compatible
Turbomolecular High Vacuum Pump	66 L/s	300 L/s	300 L/s	300 L/s	300 L/s
NeverVent (VPI + V-Lock)	Not Included (No Direct Probes)	Not Included (No Direct Probes)	NeverVent as standard Optional Direct Probes	NeverVent as standard Optional Direct Probes	Not Included (No Direct Probes)
t-SIM / AutoSIM	Y	Y	Y	Y	Y
SmartTune	Y	Y	Y	Y	Y
Quadrupole Scanning Speed	20,000 Da/s	20,000 Da/s	20,000 Da/s	20,000 Da/s	20,000 Da/s

(*) Installation specification

Thermo Fisher

SCIENTIFIC

<u>Competitive comparison xls tool</u> (download)

Mass Spec Components Same for All Product Offerings

New ISQ 7000 Single Quadrupole GC-MS

ISQ 7000 GCMS – Designed with Intention

Why Triple Quadrupole GC-MS/MS?

Single Quadrupole GC-MS

MS

Triple Quadrupole GC-MS/MS

MS MS 0 Quadrupole Quadrupole Quadrupole 1 EM Ion Transfer lon 2 (Q2) 3 (Q3) (Q1) Detector Source Optics Collision Cell

ThermoFisher SCIENTIFIC

TSQ 9000 Configurations & Upgrade

TSQ 9000 GC-MS/MS Industrial Design

One product with different configuration options

TSQ9K-VPI TSQ9K-VPICI

TSQ 9000 GC-MS/MS– Flexible purchase options which are scalable in the field

Full field upgrade path for TSQ 9000 configurations, but no upgrade from TSQ 8000, or TSQ Duo

TSQ 9000 GC-MS/MS Upgrade tool

Upgrade From	Large Turbo Pump Upgrade	VPI Upgrade	EI (Electron Ionization) - Extractabrite Source	CI (Chemical Ionization) Upgrade	AEI (Advanced Electron Ionization) - AEI Source
Upgrade Part Number:	1R120191-6203	1R120192-6200	1R120191-0030	1R120504-0001	1R120602-1200
Pre-requisite(s):	None	Large Turbo Pump, El Source	None	Large Turbo Pump, El Source	Large Turbo Pump
ΤSQ9K-ΜΤΝΟVΡΙ			\checkmark	Î	
ΤՏQ9Κ-ΝΟΥΡΙ	\checkmark		\checkmark		1
TSQ9K-VPI	\checkmark	\checkmark	\checkmark	Î	
TSQ9K-VPICI	\checkmark	\checkmark	\checkmark	\checkmark	
TSQ9K-AEI			1	Î	\checkmark

TSQ 9000 GC-MSMS system – Designed with intention

Triple Quad GC-MS: Q1 Precursor Ion Selection

Triple Quad: Q2 Collision-Induced Dissociation (CID)

Fragmentation of both analyte and matrix ion

Triple Quad GC-MS: Q3 Product Ion Selection

Quadrupole 1 (Q1)	Quadrupole 2 (Q2)	Quadrupole 3 (Q3)	EM Detector
	w/ Argon Gas		

Triple Quad GC-MS: Selected Reaction Monitoring (SRM)

Quadrupole 1 (Q1)	Quadrupole 2 (Q2) Collision Cell	Quadrupole 3 (Q3)	EM Detector
	w/ Argon Gas		

Triple Quad GC-MS: Selected Reaction Monitoring (SRM)

Experimental

- Instrumentation overview
- Standard preparation
- Sample preparation
- GC-MS consumables
- GC-MS conditions
- AutoSRM Easy Method Development

Ultimate Sensitivity with the new AEI source

UNSTOPPABLE

Introducing the Advanced Electron Ionization (AEI) source

Inheriting from the Thermo Scientific[™] ExtractaBrite[™] ion source

- Highly inert material
- Independent dual heater
- Proprietary RF lenses
- Dual filament design

Adding innovative design for superior sensitivity and robustness

- Highly efficient ionization
- Tightly focused ion beam

Unstoppable Uptime

Advance Electron Ionization (AEI) source – extended robustness

- Highly focused ion beam makes this ion source extremely robust
- Maintenance frequency is significantly reduced even with difficult matrices
- Utmost sensitivity is now achieved with extended robustness, ideal for challenging samples

ThermoFisher SCIENTIFIC

NoVent Solution vs V-Lock on Thermo Scientific GCMS

- Both solutions allows the user to replace the analytical GC column connected to a Mass Spectrometer, without breaking the vacuum.
- The V-Lock is an innovative proprietary technology which uses the VPI to isolate the MS and maintain the vacuum when the column is disconnected. It requires a VPI enabled configuration.
- The NoVent uses a microfluidic Silflow connector to supply an auxiliary gas to the MS when the analytical column is disconnected. It is the solution for all the NO VPI configurations and for the new AEI source

Pros & Cons

V-Lock

- It has the advantage to avoid any additional connection to the column end, which could be potentially source of dead volumes or leaks
- Additional advantages are that it is unique on the market and it easier to use compares to the No-Vent
- The cons is that it requires a more expensive VPI enabled MS configuration. Additionally it is not compatible with the new AEI source

No-Vent

- The advantage is that it can be used for the NO-VPI configuration
- The cons is that it requires additional connections to the column and an Aux Gas supply

Thermo NoVent Microfluidics Module

 Microfluidics Silflow, completed with a manual on/off switching for the Aux Gas supply, calibrated restrictions and connectors

NoVent Microfluidic connected to column and flow restrictors with no dead volume

NoVent module: principle of operations

Thermo NoVent Microfluidics is simpler to be used, no gas flow setting required

NeverVent technology for no vent source exchange

Extends the capability of the vacuum probe interlock (VPI) design with the newly introduced source plug, V-Lock

Through the VPI, no need to vent mass spec system for extracting the wireless ExtractaBrite ion source

Step 1. Insert removal tool

Step 2. Remove source

Step 3. Hot source is held in tool

Step 4. Push source out of tool

Liberating routine labs with ISQ & TSQ: Using NeverVent Technology

V-Lock

Allows vent free GC column exchange

No complicated fluidics / extra connections

Ion Source Maintenance

ExtractaBrite

Vent free source exchange

Extended capability with the VPI

Direct Sample Probe - ideal for materials difficult to elute chromatographically

- Designed to eliminate sample preparation time
- Compatible with all modes of ionization and mass analysis
- Simplified use through the Vacuum Probe Interlock (VPI)

- Direct Insertion Probe (DIP) ideal for solid samples or trace components in solid matrices such as forensic samples, tissue, etc.
- Direct Exposure Probe (DEP) ideal for liquids or solids dissolved in a suitable solvent.

Routine Ease of Use

Retention Time Alignment

- Easy and fast SW tool to maintain ٠ retention times during routine operation
- n-Decane (C10) is used as the only target reference compound
- No need for long calibration sequence
- Only one injection is needed providing quick method transfer in GC or GC-MS

Set the reference RT Need to align the RT? Run again C10 Input the new settings GO

• Run C10 on the reference column

- If you trimmed the column
- If you replaced the column
- Simply input the new reference RT and the column void time (air peak)
- · The SW calculate the new carrier flow or column dimension settings to update the method

Routine Ease of Use

Fullscan

develop

GO

Auto SIM – Streamlined method set up workflow

 List of compunds and RT

- AutoSIM to automatically select ions
- Link to Data System
- Update method
- Acquire and quantify

A real time saver and productivity booster

Method Development - AutoSRM

AutoSRM

- A triple quad method development expert integrated into your system
- Provides full method development independence
- Fully optimised SRM transitions <u>for your system</u>, even for less experienced users
- Saves huge amount of time and effort

Method Development - From Single Quad, to Triple Quad

SIM Bridge

- Simple tool to migrate from single quadrupole to triple quadrupole
- SIM methods exported from other sources to be translated to the TSQ 9000 system method
 - SIM methods can be immediately run on the TSQ 9000 system or through AutoSRM to translate the SIM information into a powerful SRM method

Scalable in a changing laboratory environment

TRACE 1310

thermo scientific

Pick your configuration ISQ 7000

Perfect for today, ready for tomorrow

- Fit for purpose GC-MS solution
- Grows with evolving regulatory requirements
- Base to advanced configurations
- Full field upgrade path

Ultra high sensitivity and robustness ISQ 7000 AEI

High-throughput solution ISQ 7000 NeverVent EI & CI

High-throughput solution ISQ 7000 NeverVent EI

Accessible high performance 300L/s ExtractaBrite

Unstoppable scalability TSQ 9000

Perfect for today, ready for tomorrow

- Grows with laboratory requirements
- From base to advanced configurations
- Full field upgrade path

Ultra high performance and robustness TSQ 9000 AEI

High-throughput solution TSQ 9000 NeverVent EI & CI

High-throughput solution TSQ 9000 NeverVent El

Most accesible entry from SQ>TQ 240L/s ExtractaBrite Affordable performance 300L/s ExtractaBrite

(a)

Offering beyond GC-MS for routine workflow

Automated Sample Handling and Introduction

APPLICATIONS

UNSTOPPABLE

Analysis of Drugs of Abuse (DoA) by Single Quadrupole GC-MS

Sensitive and robust unknown screening workflow using Advanced Electron Ionization

- High-throughput unknown screening of urine samples
- ✓ High sensitive full scan acquisition and signal deconvolution
- ✓ Simple and fast SPE as sample prep

Thermo Scientific AN 10592 – Sensitive screening of DoA in human urine by GC-MS following a simple SPE

LVR Customer Testimonial

Sensitive Screening for Drugs of Abuse in Human Urine Using Single Quadrupole GC-MS and a Simple Solid Phase Extraction

Thursday, March 29, 2018 at 8am EDT | 1pm BST | 2pm CEST

LCIGC

thermo scientific

Sensitive screening for drugs of abuse in human urine using single quadrupole GC-MS following a simple solid phase extraction

CCS Products Used For DoA Study

HyperSep silica based SPE

TR-DoA5 15m, 0.25 mmID, 0.25 um

LinerGOLD

p/n 26AF130P

DoA with ISQ7000-AEI GCMS

LVR- Clinic Viersen Pharmacy and Laboratory (Germany)

- Determination of Asservates with GC-MS
- Mostly: Urine Samples
- Rare: Drug Screening in Serum
- No analysis of hair

For Forensic Use Only.

SPE Sample Preparation

3 ml urine +30 μl β-Glucuronidase Incubate at 56 °C

for 30 min

Conditioning with 3ml Methanol Pre-equilibration with formic acid 0,1 % Sample application

Rinsing: 1 ml formic acid 0,1 % 0,5 ml Methanol/Water 50:50 + 0.1 % formic

acid

Analyte Elution with 2 x 1,5 ml 5 % NH3 /Methanol at pH 9

Thermo Scientific™ HyperSep™ Verify CX Cartridges

200 mg sorbent bed 3 ml volume

p/n 60108-777

Evaporate the eluate at 65°C under air stream. Dissolve extract with 50 µl Methanol, centrifuge the sample before inject 1 µl into the GC-MS system

GC-MS Experimental conditions

Trace1310 GC Oven	
Initial temperature:	70 °C
Initial hold time:	0.5 min
Ramp 1 rate:	22 °C/min
Ramp 1 final temperature:	320 °C
Ramp 1 hold time:	2 min

S/SL Method

S/SL mode:	Splitless with Surge
Temperature:	280 °C
Splitless time:	1 min
Split flow:	20 mL/min
Surge pressure:	172 kPa
Surge duration:	1 min
Purge flow:	5 mL/min
Carrier mode:	Constant Flow
Carrier flow:	1.5 mL/min
Vacuum compensation:	On

ISQ 7000 - AEI	
MS transfer line	
temperature:	250 °C
lon source temperature:	270 °C
Ionization mode:	EI
Acquisition start time	
(or solvent delay):	1.5 min
Start mass:	50 amu
End mass:	550 amu
Scan time:	0.2 s

- Trace[™] TR-DoA 35MS (p/n 26AF130P) 15m, 0.25mm ID, 0.25 um
- LinerGOLD™ GC Focus Liner (p/n 453A-1255-UI)
- Triplus [™] 100 LS Autosampler (1uL injection)
- Thermo Scientific[™] Chromeleon[™] Chromatography Data System (CDS)
- AnalyzerPro® software to perform automated MS signal deconvolution

Urine sample from a forensic case study

T	h	e	rn	nc	F	Í	s	1	er
S	С	1	Е	N	Т	I	F	I	С

C20H30O4

C12H14CIN

C12H7N7O2

148553-50-8 C8H17NO2

85107-43-3 C9H10BNO4

218165-97-0 C11H14FNO2

20722-75-4 C12UON2

All Channels

774

646

602

608

741

794

885

685

805

696

807

952

mainlib

mainlib

mainlib

mainlit

mainlik

pmwtox3n 823

nist extern 685

78.00

84.16

68.50

69.37

63.02

66.77

00.45

n/a

n/a

n/a

126 6.4185

34 4.1737

301 9.8059

185 7.5544

ene 10 /015

1446 6.3983

786 4.1569

2442 9.7976

1780 7.5237

548 13.6628 3576 13.6553

534 13.4043 3500 13.3947

6.4362

9.8127

7.5809

41462138

3852603

26220762

13.6714 1450555

4.1717 37608415

13.4083 1334556

1.11

0.04

1.01

0.04

0.10

0.70

0.04

0.06

0.00

0.06

0.00

0.01

0.04

0.00

55004455

2940500

76045999

3296551

7430121

23275599

2501005

0.0378 3.17 149

0.0160 0.65 207

0.0148 3.46 56

0.0136 0.72 207

0.0151 0.66 124

0.0157 0.71 207

0.0572 1.87 58

22590648

788253

7647393

461859

1916511

10709959

747004

13

17

14

5

14

10

Pyridazine-3,5-dicarbonitrile, 1,6-dihydro-4-amino-6-imino-1-(2-nitrophenyl)

Phthalic acid, 2-ethylhexyl isobutyl ester

Pirprofen - CO2 page 982 in PMW part 2

Propane-1,3-diol 4-nite benzeneboronate

Dyrida[2 2-d]ovrimiding 4-phony

Propanoic acid, 3-amino-3-(2-fluorophenyl)-, ethyl ester

Urine sample from a forensic case study of Heroin consumption

Summary Report

																_					
	RT	Scan	Start RT	End RT	Area	Area %	Total %	Height	Width	Purity	Base Peak	Base Peak Area	Ions	Name A	Library	Forward	Reverse	Confidence %	CAS #	Chemical	•
184	8.2208	1976	8.2032	8.2533	23268524	0.68	0.04	18411323	0.050	1 0.66	154	11297944	16	wethyl-5,6,7,8-tetrahydro a thioxo-4-quinazolinone	mainlib	564	721	61.11	104829-71-2	C9H12N:	
246	9.3228	2300	9.3018	9.3463	170375816	4.98	0.33	162778951	0.044	6 4.98	327	30221656	9.	6-Monoacetylmorphine	mainlib	635	648	63.89	2784-73-8	C19H211	
459	13.6625	3576	13.6542	13.6676	801988	0.02	0.00	1881333	0.013	4 0.47	207	334277	4	6-Nitro-8-methoxy-2H-chromeo	mainlib	939	994	95.55	62063-07-4	C10H9N	
82	6.3264	1419	6.3071	6.3505	2794864	0.08	0.01	2800075	0.043	4 0.10	189	1827515	4	6H-Cyclobutaux, prienanthrene	mainlib	667	727	68.50	83469-43-6	C15H10	
89	6.5169	1475	6.4934	6.5404	10424753	0.30	0.02	9517074	0.047	0 0.47	58	4757095	4	7-Isoquinolinol, 1,2,3,4-tetrahydro-6-methoxy-2-methyl-1-[2-(3,4,5-trimethoxyphenyl)ethyl]-	mainlib	610	676	62.98	n/a	C22H291_	_
443	13.0299	3390	13.0234	13.0344	878462	0.03	0.00	2201379	0.011	0 0.52	207	524321	8	8-Chloro-5-quinolinecarboxylic acid	mainlib	880	977	90.91	121490-68-4	C10H6Cl	
401	11.9484	3072	11.9468	11.9589	1458012	0.04	0.00	3270712	0.012	1 0.54	207	904489	14	8-Chloro-5-quinolinecarboxylic acid	mainlib	772	956	82.72	121490-68-4	C10H6Cl	
420	12.3429	3188	12.3309	12.3446	1558512	0.05	0.00	2999270	0.013	7 0.49	207	910648	9	8-Chloro-5-quinolinecarboxylic acid	mainlib	764	999	83.45	121490-68-4	C10H6Cl	
341	10.8022	2735	10.7879	10.8076	327909	0.01	0.00	537872	0.019	7 0.05	285	25266	6	8-Dimethyl(isopropyl)silyloxypentadecane	mainlib	532	653	56.83	n/a	C20H44(
257	9.4622	2341	9.4521	9.4734	2106316	0.06	0.00	2929602	0.021	4 0.20	248	1047415	12	8-Methoxy-1,3,4,5-tetrahydro-2H-1-benzazepin-2-one tbdms	mainlib	497	558	51.53	n/a	C17H271	
289	9.9520	2485	9.9430	9.9629	1615828	0.05	0.00	2226785	0.019	9 0.16	90	466335	4	8-Quinolinamine, N-(trimethylsilyl)-6-[(trimethylsilyl)oxy]-	mainlib	675	830	72.15	36972-87-9	C15H24I	
207	10 2241	2565	10 2095	10 2264	1010757	0.06	0.00	2170051	0.027	0 0 10	215	620151	<u>c</u>		covmon constrollibron spirit bo	400	506	50 11	n/n	CIOUNEI	"
۰ L																				P	

EU drug report 2017 on seized drugs

- Legal highs are new psychoactive drugs that contain various chemical ingredients, some of which are illegal while others are not.
- They produce similar effects to illegal drugs like cocaine, cannabis and ecstasy, but are structurally different enough to avoid being controlled under the Misuse of Drugs Act.
- They are either stimulants (making users feel energized), sedatives (making users feel relaxed or euphoric), or psychedelics (altering perceptions and making users hallucinate)

How to identify new drugs of abuse ?

Unknown mass spectrum in the analysis

Free Nist Format Libraries on the web https://www.caymanchem.com/app/template/SpectralLibrary.vm

Scientific working group for the analysis of seized drugs http://www.swgdrug.org/ms.htm

Synthetic Cannabinoids

Used as legal alternative to Marijuana

- **Characteristics of synthetic cannabinoids:**
- They are more potent than THC:
- JWH 018 is 4 times more potent than THC
- AB- Fubinaca is 40 times more potent than THC
- AMB- Fubinaca is 85 times more potent than THC

Analysis of a herbal mixture

Sun	jummary Report																			
	RT	Scan	Start RT	End RT	Area	Area %	Total %	Height	Width	Purity	Base Peak	Base Peak Area	Ions	Name	Library	Forward	Reverse	Confidence %	CAS #	Ch
211	9.3163	2298	9.2813	9.3602	2987745215	94.24	8.26	1981215426	0.0789	65.20	233	450088003	128	5-Fluoro-AMB 1	nist extern	615	652	62.61	n/a	C1
172	8.0817	1935	8.0640	8.1119	6562407	0.21	0.02	5702785	0.0479	2.12	145	1785192	15	5-Fluoro-NPB-22 2	nist extern	651	656	65.25	1445579-79-2	C2
300	13.2242	3447	13.1760	13.2953	15457413	0.49	0.04	6446598	0.1193	5.74	232	6893094	16	5-Fluoro-PB-22 3	nist extern	858	860	85.86	1400742-41-7	C2
226	10.2040	2559	10.1700	10.2792	994597873	31.37	2.75	891206463	0.1092	69.64	70	421098086	132	5-Fluoro-PY-PINACA 4	nist extern	842	868	84.98	n/a	C1
122	6.7417	1541	6.7185	6.7662	99187041	3.13	0.27	97147490	0.0477	15.40	189	11522203	127	3 Icepronvlidene-C-methyldeca-3,6,9-trien-2-one	mainlib	709	771	72.76	n/a	C1
104	6 41 52	1445	6 3840	6 4 3 8 7	1831395	0.06	0.01	1702170	0.0546	0.34	173	1339152	7	5-Methoryindole-2-carborylic acid	mainlih	830	869	84.17	4382-54-1	CI

For Forensic Use Only.

Urine sample from a subject who consumed a herbal mixture

eport

:	Scan	Start RT	End RT	Area	Area %	Total %	Height	Width	Purity	Base Peak	Base Peak Area	Ions	Name	Library	Forward	Reverse	Confidence %	CAS #
5 3	2309	9.3320	9.3755	229595075	1.41	0.19	216550176	0.0435	9.96	91	19606602	67	5-Pregnen-3á-ol-20-one, trifluoroacetate	mainlib	660	663	66.09	n/a C
5 3	1641	7.0531	7.1341	848822253	5.20	0.70	453051579	0.0810	5.42	109	184232865	28	5-[5-Methyl-2-furyl]hydantoin	mainlib	711	767	72.78	68641-80-5 0
5	1519	6.6508	6.6856	62933412	0.39	0.05	80055457	0.0348	1.34	84	5474128	24	7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione	mainlib	624	693	64.47	82304-66-3 (
5 3	1676	7.1836	7.1956	28468176	0.17	0.02	71785844	0.0121	1.71	112	16810394	10	7-Oxabicyclo[4.1.0]heptan-2-one	mainlib	700	862	74.86	6705-49-3 0
38 3	3003	11.6894	11.7323	2804968	0.02	0.00	2405942	0.0428	0.15	253	2259907	4	9-Azabicycle[3:8:1]non 2 ene 9-carboxylic acid, 6-(acetyloxy)-, ethyl ester, endo-	mainlib	705	999	79.32	49690-31-5 0
)	1931	8.0590	8.0927	10814589	0.07	0.01	10808414	0.0337	0.26	144	5067083	6	9-Oxononanoic acid	mainlib	604	879	68.65	2553-17-5 0
)3 3	2852	11.1724	11.2344	74623681	0.46	0.06	63275248	0.0621	2.55	109	41191665	16	AB-FUBINACA Urin 2301 215, t=594 sec	spice	637	709	65.86	118528-00-0
3	1679	7.1982	7.2154	19747026	0.12	0.02	47594057	0.0172	0.79	113	1766320	8	Acetic acid, 2-(1-buten-3-yl)-2-nitro-, etbyl ester	mainlib	687	824	72.81	n/a C
)	1936	8.0658	8.1061	77025120	0.47	0.06	80078742	0.0402	1.62	82	20235869	19	Allopseudococaine	mainlib	625	810	68.05	518-97-8 0
)	1981	8.2073	8.2515	1230133171	7.53	1.02	1402501798	0.0442	33.41	91	63070273	122	Androst-2-en-17-one, (5à)-	mainlib	799	888	82.57	963-75-7 (

For Forensic Use Only.

Urine sample from a subject who consumed a herbal mixture

Synthetic Opioids:

- U 47700
- Acrylfentanyl
- Ocfentanyl
- Carfentanyl

Fentanyl derivates are responsible for the increase of drug related deaths in the USA and Canada

Synthetic Opioids – Urine sample acrylfentanyl

Summary Report

																					-
	RT	Scan	Start RT	End RT	Area	Area %	Total %	Height	Width	Purity	Base Peak	Base Peak Area	Ions	Name	Library	Forward	Reverse	Confidence %	CAS #	Chemical Formul	^
208	8.7176	2122	8.6897	8.7354	177563309	4.94	0.50	181495002	0.0457	18.63	147	9091387	115	Acetic acid, 17-(1-hydroxy-ethyl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl ester	mainlib	794	794	79.40	n/a	C23H34O3	
203	8.6019	2088	8.5802	8.6160	46308123	1.29	0.13	53690772	0.0358	6.74	112	1623886	74	Acetic acid, 17-(1-hydroxy-ethyl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl ester	mainlib	649	653	65.02	n/a	C23H34O3	
510	13.8158	8 3621	13.8075	13.8203	404884	0.01	0.00	904249	0.0129	0.36	208	119071	5	Acetic acid, 5-bromo-2-penten-2-yl ester	mainlib	692	984	77.96	n/a	C7H11BrO2	
321	10.8705	5 2755	10.8669	10.8773	226893	0.01	0.00	553147	0.0104	0.22	206	154078	4	Acetic acid, [(2,4,6-triethylbenzoyl)thio]-	mainlib	787	824	79.81	67902-78-7	C15H20O35	
342	11.2480	2866	11.2400	11.2531	406116	0.01	0.00	748354	0.0132	0.27	206	184986	4	Acetic acid. [/2.4.6-triethylbenzoyl)thio]-	mainlib	754	934	80.80	67902-78-7	C15H20O35	
360	11.5031	1 2941	11.4905	11.5042	543261	0.02	0.00	1466331	0.0137	0.34	280	162699	5	Acetic acid, [(2,4,6-triethylbenzy])thio]-	mainlib	651	986	75.15	67902-78-7	C15H20O35	
283	10.0576	5 2516	10.0371	10.1010	379215333	10.56	1.06	356031219	0.0640	25.52	243	46258080	102	Acrylfentanyl	nist extern	739	771	74.86	79279-03-1	C22H26N2O	ī
23	4.4118	856	4.3840	4.4527	29493073	0.82	0.08	27665850	0.0688	5.06	105	13257142	14	Aloba-ethoxycarbonyl-aloba-ethylbenzyl benzoate	mainlib	758	809	77.33	97080-45-0	C19H20O4	
71	6.1123	1356	6.1037	6.1287	13331563	0.37	0.04	16456571	0.0250	1.43	112	7934348	7	Aminomaleimide	mainlib	775	835	79.30	37770-94-8	C4H4N2O2	
271	9.8603	2458	9.8283	9.8897	208765772	5.81	0.59	158934334	0.0614	16.85	93	7592085	131	Androstan-17-one, 3,11-dihydroxy-, (3à,5á,11á)-	mainlib	860	861	86.03	739-26-4	C19H30O3	

For Forensic Use Only.

ISQ 7000 AEI - High sensitivity and high robustness GC-MS

GC-MS Maintenance:

- ✓ daily: tune check (incl. air/ water tune)
- daily: standard sample with Morphin as sensibility check
- every 10 urine samples another standard sample
- ✓ every 50 urine samples: liner change
- ✓ every 150 urine samples full tune
- ✓ every 600 urine samples clean the source

Sensitive screening for drugs of abuse in human urine using single quadrupole GC-MS following a simple solid phase extraction

Authors

Luzia Schaaf,¹ Petra Gerhards² and Inge de Dobbeleer³ ¹L/R Klinik, Viersen, Germany; ²Thermo Fisher Scientific, Dreieich, Germany; ³Thermo Fisher Scientific, Breda, The Netherlands

Keywords

SPE, urine, GC-MS, advanced electron ionization, AEI, single quadrupole, deconvolution, screening, drugs of abuse, forensic toxicology

Goal

To assess a fast, robust, and reliable method of screening for drugs of abuse in urine samples in a routine and high-throughput forensic laboratory.

Introduction

In many forensic investigations there is a requirement to analyze drugs of abuse (DoA) in human bodily fluids. In many cases, a reliable and affordable methodology is needed given the high number of samples that must be investigated and the average price per sample the laboratories can charge. One of the most important requirements for this application is a sensitive method, which can be used to selectively detect a large number of drug groups, such as opiates, amphetamines, synthetic cannabinoids, and others, in one single method at very low levels. This is a challenging task for any laboratory as in addition to being sensitive, the method requires a simple, cost-effective sample preparation and a robust and easy to implement GC-MS method.

The matrix screened is mainly urine and the drugs of abuse can be detected for approximately one week after tast use. Urine samples are biologically complex, reflecting the state of the metabolism and life style habits of the subjects. Consequently, many drug substances and their metabolites will be present at quite low levels in the sample, making it challenging to detect them

TFS Workflow Solution for the Determination of DoA

Immuno Assays

- **CEDIA**[®] Cloned Enzyme Donor Immunoassay (β-Galactosidase)
 - Optimized for most analyzers, the CEDIA immunoassays are valued worldwide for their accuracy, precision, lot-to-lot dependability and stable shelf life
- EIA (DRI[®]) Enzyme Immunoassay (G6PDH)
 - Liquid, ready-to-use reagents in convenient packaging for use on a variety of chemistry analyzers

Sample preparation

- HyperSep Verify CX and AX
- Vials and Closures
- LinerGold GCLiners
- TraceGold GC columns

GCMS analysis

- ISQ 7000, Single Quad
- TSQ 9000, Triple Quad
- Qexactive HRAM, GC-Orbitrap

thermo scientific

Sensitive determination of THCCOOH in hair to regulatory requirements using Triple Quadrupole GC-MS/MS

APPLICATION NOTE 10493

Hair samples of 50 mg

- Wash with 2–3 mL of dichloromethane
- Cut into 10-20 mm pieces.

Spike

- THC- COOH
- deuterated IS THCCOOH-d3

Calibration

- calibration levels 0.05, 0.2, 0.5, 1 pg/mg
- Internal standard at 0.2 pg/mg

Hydrolysis

• at 75 °C in 1 mL of 5 M NaOH for 45 minutes.

Extraction and derivatization

- Acidify up to pH 4 with concentrated acetic acid.
- Vortex
- Add 4 mL n-hexane:ethyl acetate (9:1).
- evaporate to dryness
- derivatize with 50 μL PFPA and 25 μL HFIP at 70 $^\circ C$
- Reconstitute in 50 µL hexane;
- 2 μL injection on GCMSMS

Instrument

- Trace1310 GC
- TSQ 9000 with ExtractaBrite ion source
- Triplus RSH Autosampler

Forensic Analysis of THC- COOH in hair - Results

R2= 0.9962; 5 replicate injections of cal curve Hair spiked with 0.05, 0.2, 0.5 and 1 pg/mg

ISQ 7000 GC-MS and TSQ 9000 GC-MS/MS systems

TRACE 1310

thermo

11111

A Mission We are Proud of

We enable our customers to make the world healthier, cleaner and safer.

